8,002 research outputs found

    Reweighting of the form factors in exclusive B --> X ell nu decays

    Full text link
    A form factor reweighting technique has been elaborated to permit relatively easy comparisons between different form factor models applied to exclusive B --> X l nu decays. The software tool developped for this purpose is described. It can be used with any event generator, three of which were used in this work: ISGW2, PHSP and FLATQ2, a new powerful generator. The software tool allows an easy and reliable implementation of any form factor model. The tool has been fully validated with the ISGW2 form factor hypothesis. The results of our present studies indicate that the combined use of the FLATQ2 generator and the form factor reweighting tool should play a very important role in future exclusive |Vub| measurements, with largely reduced errors.Comment: accepted for publication by EPJ

    Flavourful hadronic physics

    Full text link
    We review theoretical approaches to form factors that arise in heavy-meson decays and are hadronic expressions of non-perturbative QCD. After motivating their origin in QCD factorisation, we retrace their evolution from quark-model calculations to non-perturbative QCD techniques with an emphasis on formulations of truncated heavy-light amplitudes based upon Dyson-Schwinger equations. We compare model predictions exemplarily for the B\to\pi transition form factor and discuss new results for the g_{D*D\pi} coupling in the hadronic D* decay.Comment: Based on a talk given at Light Cone 2009: Relativistic Hadronic And Particle Physics, 8-13 July 2009, Sao Jose dos Campos, Sao Paulo, Brazi

    Trail Making Test performance contributes to subjective judgment of visual efficiency in older adults

    Get PDF
    Introduction: The determinant factors that influence self-reported quality of vision have yet to be fully elucidated. This study evaluated a range of contextual information, established psychophysical tests, and in particular, a series of cognitive tests as potentially novel determinant factors.   Materials & Methods: Community dwelling adults (aged 50+) recruited to Wave 1 of The Irish Longitudinal Study on Ageing, excluding those registered blind, participated in this study (N = 5,021). Self-reports of vision were analysed in relation to visual acuity and contrast sensitivity, ocular pathology, visual (Choice Response Time task; Trail Making Test) and global cognition. Contextual factors such as having visited an optometrist and wearing glasses were also considered. Ordinal logistic regression was used to determine univariate and multivariate associations.   Results and Discussion: Poor Trail Making Test performance (Odds ratio, OR = 1.36), visual acuity (OR = 1.72) and ocular pathology (OR = 2.25) were determinant factors for poor versus excellent vision in self-reports. Education, wealth, age, depressive symptoms and general cognitive fitness also contributed to determining self-reported vision.   Conclusions: Trail Making Test contribution to self-reports may capture higher level visual processing and should be considered when using self-reports to assess vision and its role in cognitive and functional health

    Final state interactions in B+- to K+ K- K+- decays

    Get PDF
    Charged B decays to three charged kaons are analysed in the framework of the QCD factorization approach. The strong final state K+K-interactions are described using the kaon scalar and vector form factors. The scalar non-strange and strange form factors at low K+K- effective masses are constrained by chiral perturbation theory and satisfy the two-body unitarity conditions. The latter stem from the properties of the meson-meson amplitudes which describe all possible S-wave transitions between three coupled channels consisting of two kaons, two pions and four pions. The vector form factors are fitted to the data on the electromagnetic kaon interactions. The model results are compared with the Belle and BaBar data. Away from phi(1020) resonance, in the S-wave dominated K+K- mass spectra, a possibility for a large CP asymmetry is identified.Comment: 7 pages, 4 figures, modified version published in Physics Letters

    Chemical master equation and Langevin regimes for a gene transcription model

    Get PDF
    Gene transcription models must take account of intrinsic stochasticity. The Chemical Master Equation framework is based on modelling assumptions that are highly appropriate for this context, and the Stochastic Simulation Algorithm (also known as Gillespie's algorithm) allows for practical simulations to be performed. However, for large networks and/or fast reactions, such computations can be prohibitatively expensive. The Chemical Langevin regime replaces the massive ordinary dierential equation system with a small stochastic dierential equation system that is more amenable to computation. Although the transition from Chemical Master Equation to Chemical Langevin Equation can be justied rigorously in the large system size limit, there is very little guidance available about how closely the two models match for a xed system. Here, we consider a transcription model from the recent literature and show that it is possible to compare rst and second moments in the two stochastic settings. To analyse the Chemical Master Equation we use some recent work of Gadgil, Lee and Othmer, and to analyse the Chemical Langevin Equation we use Ito's Lemma. We nd that there is a perfect match|both modelling regimes give the same means, variances and correlations for all components in the system. The model that we analyse involves 'unimolecular reactions', and we nish with some numerical simulations involving dimerization to show that the means and variances in the two regimes can also be close when more general 'bimolecular reactions' are involved

    Obtaining CKM Phase Information from B Penguin Decays

    Full text link
    We discuss a method for extracting CP phases from pairs of B decays which are related by flavor SU(3). One decay (B0 -> M1 M2) receives a significant bbar -> dbar penguin contribution. The second (B' -> M1' M2') has a significant bbar -> sbar penguin contribution, but is dominated by a single amplitude. CP phase information is obtained using the fact that the B' -> M1' M2' amplitude is related by SU(3) to a piece of the B0 -> M1 M2 amplitude. The leading-order SU(3)-breaking effect (~25%) responsible for the main theoretical error can be removed. For some decay pairs, it can be written in terms of known decay constants. In other cases, it involves a ratio of form factors. However, this form-factor ratio can either be measured experimentally, or eliminated by considering a double ratio of amplitudes. In all cases, one is left only with a second-order effect, ~5%. We find twelve pairs of B decays to which this method can be applied. Depending on the decay pair, we estimate the total theoretical error in relating the B' -> M1' M2' and B0 -> M1 M2 amplitudes to be between 5% and 15%. The most promising decay pairs are Bd -> pi+ pi- and Bu+ -> K0 pi+, and Bd -> D+ D- and Bd -> Ds+ D- or Bu+ -> Ds+ D0bar.Comment: 38 pages, JHEP format, no figures. Comments added to text regarding most promising decay pairs; references added; conclusions unchange

    Decomposing Noise in Biochemical Signaling Systems Highlights the Role of Protein Degradation

    Get PDF
    AbstractStochasticity is an essential aspect of biochemical processes at the cellular level. We now know that living cells take advantage of stochasticity in some cases and counteract stochastic effects in others. Here we propose a method that allows us to calculate contributions of individual reactions to the total variability of a system’s output. We demonstrate that reactions differ significantly in their relative impact on the total noise and we illustrate the importance of protein degradation on the overall variability for a range of molecular processes and signaling systems. With our flexible and generally applicable noise decomposition method, we are able to shed new, to our knowledge, light on the sources and propagation of noise in biochemical reaction networks; in particular, we are able to show how regulated protein degradation can be employed to reduce the noise in biochemical systems

    The application of electrical resistance measurements to water transport in lime–masonry systems

    Get PDF
    The paper describes an experimental determination of impedance spectroscopy derived resistance measurements to record water transport in lime–masonry systems. It strongly supports the use of Sharp Front theory and Boltzmann’s distribution law of statistical thermodynamics to corroborate the data obtained. A novel approach is presented for the application of impedance measurements to the water transport between freshly mixed mortars and clay brick substrates. Once placed, fresh mortar is dewatered by brick and during this time the volume fraction water content of the mortar is reduced. An equation is derived relating this change in water content to the bulk resistance of the mortar. Experimental measurements on hydraulic lime mortars placed in contact with brick prisms confirm the theoretical predictions. Further, the results indicate the time at which dewatering of a mortar bed of given depth is completed. The technique has then potential to be applied for in situ monitoring of dewatering as a means of giving insight into the associated changes in mechanical and chemical properties

    Impact of BK0+B\to K^\ast_0 \ell^+\ell^- on the New Physics search in BK+B\to K^\ast \ell^+\ell^- decay

    Full text link
    We discuss the uncertainty related to the amount of unwanted BK0(Kπ)+B\to K_0^\ast (K\pi)\ell^+\ell^- events in the sample of BK(Kπ)+B\to K^\ast (K\pi)\ell^+\ell^-. Those events can increase the measured differential decay rate by up to 10% in the low q2q^2 region, and can be a source of non-negligible uncertainty in the full angular distribution of the BK(Kπ)+B\to K^\ast (K\pi)\ell^+\ell^- decay. Although the transverse asymmetries should be unaffected by the presence of the SS-wave KπK\pi pairs, coming from the scalar K0K_0^\ast meson, we show that in practice their normalization might be sensitive to those events and could entail a sizable uncertainty in transverse asymmetries around q2=2GeV2q^2=2 GeV^2. For other q2q^2's that error is under about 10%.Comment: 16 pages [as published in NPB

    g(B*Bpi)-coupling in the static heavy quark limit

    Get PDF
    By means of QCD simulations on the lattice, we compute the coupling of the heavy-light mesons to a soft pion in the static heavy quark limit. The gauge field configurations used in this calculations include the effect of N_f=2 dynamical Wilson quarks, while for the static quark propagator we use its improved form (so called HYP). On the basis of our results we obtain that the coupling g=0.44 +/- 0.03 (+0.07/-0.00), where the second error is flat (not gaussian).Comment: 7 pages, 3 figs (published version
    corecore