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By means of QCD simulations on the lattice, we compute the coupling of the heavy–light mesons to a
soft pion in the static heavy quark limit. The gauge field configurations used in this calculations include
the effect of N f = 2 dynamical Wilson quarks, while for the static quark propagator we use its improved
form (so-called HYP). On the basis of our results we obtain that the coupling ĝ = 0.44 ± 0.03+0.07

−0.00, where
the second error is flat (not Gaussian).

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The static quark limit of QCD offers a simplified framework to
solving the non-perturbative dynamics of light degrees of freedom
in the heavy–light systems. That dynamics is constrained by heavy
quark symmetry (HQS): it is blind to the heavy quark flavor and its
spin. As a result the total angular momentum of the light degrees
of freedom becomes a good quantum number ( j P

� ), and therefore
the physical heavy–light mesons come in mass-degenerate dou-
blets. In phenomenological applications the most interesting in-
formation involves the lowest lying doublet, the one with j P

� =
(1/2)− , consisting of a pseudoscalar and a vector meson, such as
(Bq, B∗

q ) or (Dq, D∗
q ) states, where q ∈ {u,d, s}. When studying any

phenomenologically interesting quantity from the QCD simulations
on the lattice that includes heavy–light mesons (decay constants,
various form factors, bag parameters and so on), one of the ma-
jor sources of systematic uncertainty is related to the necessity to
make chiral extrapolations. The reason is that the physical light
quarks, which are expected to most significantly modify the struc-
ture of the QCD vacuum, are much lighter than the ones that are
directly simulated on the lattice, mq � mu,d . Here by “q” we label
the light quark masses that are attainable from the lattice. Since
the QCD dynamics with very light quarks is bound to be strongly
affected by the effects of spontaneous chiral symmetry breaking,
a more suitable (theoretically more controllable) way to guide such
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extrapolations is by using the expressions derived in heavy meson
chiral perturbation theory (HMChPT), which is an effective theory
built on the combination of HQS and the spontaneous chiral sym-
metry breaking [SU(N f )L ⊗ SU(N f )R → SU(N f )V ]. Its Lagrangian is
given by [1]

Lheavy = − tra Tr[H̄aiv · Dba Hb] + ĝ tra Tr
[

H̄a HbγμAμ
baγ5

]
,

Dμ
ba Hb = ∂μHa − Hb

1

2

[
ξ †∂μξ + ξ∂μξ †]

ba,

Aab
μ = i

2

[
ξ †∂μξ − ξ∂μξ †]

ab, (1)

where

Ha(v) = 1 + /v

2

[
P∗a

μ (v)γμ − P a(v)γ5
]
, (2)

is the heavy meson doublet field containing the pseudoscalar,
P a(v), and the vector meson field, P∗a(v). In the above formulas,
the indices a,b run over the light quark flavors, ξ = exp(iΦ/ f ),
with Φ being the matrix of (N2

f − 1) pseudo-Goldstone bosons,
and “ f ” is the pion decay constant in the chiral limit. We see that
the term connecting the Goldstone boson (Aμ) with the heavy-
meson doublet [H(v)] is proportional to the coupling ĝ , which will
therefore enter into every expression related to physics of heavy–
light mesons with j P

� = (1/2)− when the chiral loop corrections
are included.1 Being the parameter of effective theory, its value
cannot be predicted but should be fixed in some other way. It can

1 A special attention should be given to the problem related to the presence of
the nearby excited states as discussed in Ref. [2]. Any precision lattice calculation
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232 D. Bećirević et al. / Physics Letters B 679 (2009) 231–236
be related to the measured decay width Γ (D∗ → Dπ) [3], with
the resulting value ĝcharm = 0.61(7). That value turned out to be
much larger than predicted by all of the QCD sum rule approaches
[4], but consistent with some model predictions such as the one
in Ref. [5], in which a more detailed list of predictions with their
references can be found. The large value for gD∗ Dπ -coupling was
confirmed by the quenched lattice QCD study in Ref. [6], and re-
cently also in the unquenched case [7]. Since the charm quark is
not very heavy, the use of gD∗ Dπ to fix the value of ĝ-coupling,
via

ĝ = gD∗ Dπ

2
√

mDmD∗
fπ , (3)

and its use in chiral extrapolations of the quantities relevant to
B-physics phenomenology may be dangerous mainly because of
the potentially large O(1/mn

c )-corrections. Unfortunately the decay
B∗ → Bπ is kinematically forbidden and therefore, to determine
the size of ĝ , we have to resort to a non-perturbative approach to
QCD. Unlike for the computation of the heavy-to-light form factors,
QCD sum rules proved to be inadequate when computing gD∗ Dπ ,
most likely because of the use of double dispersion relations when
the radial excitations should be explicitly included in the analy-
sis, as claimed in Ref. [8]. In this Letter, instead, we compute the
ĝ-coupling on the lattice by using the unquenched gauge field con-
figurations, with N f = 2 dynamical light quarks, and in the static
heavy quark limit. The attempts to compute this coupling in this
limit were made in Ref. [9], and very recently in Ref. [10]. On the
basis of the currently available information, the coupling ĝ in the
static limit is indeed smaller than the one obtained in the charmed
heavy quark case.

In the remainder of this Letter we will briefly describe the stan-
dard strategy to compute this coupling, list the correlation func-
tions that are being computed to extract the bare coupling ĝq , as
well as the axial vector renormalization constants. We then give
details concerning the gauge field configurations used in this work,
and present our results.

2. Definitions and correlation functions to be computed

In the limit in which the heavy quark is infinitely heavy and the
light quarks massless, the axial coupling of the charged pion to the
lowest lying doublet of heavy–light mesons, ĝ , is defined via [9]

〈B| 	A|B∗(ε)〉 = ĝ	ελ, (4)

where the non-relativistic normalisation of states |B(∗)〉 is as-
sumed, 〈Ba(v)|Bb(v ′)〉 = δabδ(v − v ′). For the heavy–light hadrons
at rest (	v = 	v ′ = 	0), the soft pion that couples to the axial current,
Aμ = ūγμγ5d, is at rest too, |	q| = 0. ελ

μ is the polarisation of the
vector static-light meson. In the typical situation on the lattice we
are away from the chiral limit ( ĝ → ĝq), and the coupling ĝq be-
comes the axial form factor whose value should be extrapolated to
the chiral limit, in which the soft pion theorem relating the matrix
element of the axial current to the pionic coupling applies [9].

The standard strategy to compute the above matrix element on
the lattice consists in evaluating the following correlation func-
tions:

C2(t) =
〈∑

	x
P (x)P †(0)

〉
U

HQS= 1

3

〈∑
i,	x

V i(x)V †
i (0)

〉
U

cannot be fully trusted if the chiral extrapolations are made without discussing the
problem of discerning the mixing with the j P

� = (1/2)+ states in the chiral loop
diagrams.
=
〈∑

	x
Tr

[
1 + γ0

2
W 0

x γ5 Su,d(0, x)γ5

]〉
U
,

C3(t y, tx) =
〈∑

i,	x,	y
V i(y)Ai(x)P †(0)

〉
U

=
〈∑

	x,	y
Tr

[
1 + γ0

2
W y

0 γi Su(y, x)γiγ5 Sd(x,0)γ5

]〉
U
, (5)

where 〈· · ·〉U denotes the average over independent gauge field
configurations, the interpolating fields are P = h̄γ5q, V i = h̄γiq,
with h(x) and q(x) the static heavy and the light quark field, re-
spectively. In what follows, we drop the dependence on t y . In
practice its value is fixed to one or several values as it will be
specified in the text. In Eq. (5) we also expressed the correlation
functions in terms of quark propagators: the light ones, Sq(x, y),
and the static heavy one, which becomes a Wilson line,

W y
x = δ(	x − 	y)

tx−1∏
τ=t y

U impr.
0 (τ , 	x). (6)

The latter is merely obtained from the discretized static heavy
quark action [11]

LHQET =
∑

x

h†(x)
[
h(x) − U impr.

0 (x − 0̂)†h(x − 0̂)
]
, (7)

where for U impr.
0 , the time component of the link variable, we

use its improved form, obtained after applying the hyper-cubic
blocking procedure on the original link variable, with the pa-
rameters optimized in a way described in Ref. [12], namely with
	α = (0.75,0.6,0.3). That step is essential as it ensures the expo-
nential improvement of the signal to noise ratio in the correlation
functions with respect to what is obtained by using the simple
product of link variables [13].

The spectral decomposition of the three point function, given in
Eq. (5), reads

C3(tx) =
∑
m,n

[
Zne−E q

n t y 〈Bn|Ai |B∗
m〉e−(E q

m−E q
n )tx Zmε

(m)
i

]
,

where the sum includes not only the ground states (m = n = 0)
but also their radial excitations (m,n > 0), which are heavier
and thus exponentially suppressed. Note a shorthand notation,
Zn = |〈0|h†γ5q|Bq〉|, and the fact that we do not distinguish Zn

from couplings to the vector interpolating operator because of the
HQS. If the non-diagonal terms in the above sum were important
(n �= m) the correlation function C3(tx) would exhibit some expo-
nential dependence in tx . In practice, it appears that the correlation
functions C3(tx), as defined in Eq. (5) are very flat (tx-independent)
for all the data sets that we use in this work and the details
of which will be given in the next section (c.f. Fig. 1). This ob-
servation in fact agrees with what one can deduce from various
quark models, and in particular from the one in Ref. [5]. We will
therefore discard the non-diagonal terms in the spectral decompo-
sition of C3(tx). We are still left with the problem of contamina-
tion of the desired signal (n = 0) by the axial transitions among
radial excitations, n = m > 0. To solve that problem we should em-
ploy some smearing procedure and suppress the couplings of the
source operators to the radial excitations. To that purpose we use
the smearing technique proposed in Ref. [14], which essentially
means that – in Eq. (5) – the interpolating fields are replaced
by h̄(x)γ5q(x) → h̄(x)γ5qS(x), and similarly for the source of the
heavy–light vector mesons, where
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Fig. 1. Ratio R(tx) in Eq. (12) as obtained from our data for all three sets and for
which κval = κsea = κ2, with κ2 specified in Table 1. This plot also shows the flat-
ness of the signal of C3(tx) defined in Eq. (5). For completeness, we also note that
t y = 13.

qS(x) =
Rmax∑
r=0

ϕ(r)
∑

k=x,y,z

[
q(x + rk̂)

r∏
i=1

Uk
(
x + (i − 1)k̂

)

+ q(x − rk̂)

r∏
i=1

U †
k(x − ik̂)

]
, (8)

and ϕ(r) = e−r/R(r + 1/2)2. The link variables on the right-hand
side of Eq. (8) are fuzzed as discussed in Ref. [9]. After sev-
eral trials we chose the smearing parameters to be R = 1.3 and
Rmax = 4, to highly enhance the overlap with ground states. From
the fits of our two-point functions computed with both the local
(“loc.”) and smeared sources (“sm.”) to two exponentials on the
large interval 4 � t � 15, we obtain that Z sm.

0 /Z loc.
0 � 45, while

Z sm.
1 /Z loc.

1 < 0.05. More importantly, Z sm.
1 /Z sm.

0 < 0.04, or it can-
not be fitted, when it is completely absent. We therefore deduce
that our smearing is efficient and the contribution of the radial ex-
citations is most probably negligible. To further check this point
we reorganized the operators in C3(tx) and fixed the transition op-
erator [Ai in Eq. (5)] at t = 0, one source operator at t y ≡ tfix = −5,
and have let the other source operator free (c.f. also Ref. [16]). In
that situation the spectral decomposition looks as follows,

C ′
3(tx) �

∑
n

Z 2
n e−E q

n (tx−tfix)〈Bn|Ai|B∗
n〉ε(n)

i , (9)

which allows us to check whether or not its effective binding en-
ergy, with the smeared source operators,

E q
eff(tx) = log

(
C ′

3(tx)

C ′
3(tx + 1)

)
, (10)

agrees with what is obtained from the two-point correlation func-
tions,

E q
eff(t) = log

(
C2(t)

C2(t + 1)

)
. (11)

This is illustrated in Fig. 2, which we find satisfactory. After these
checks, we extract ĝq from the fit to a constant of the ratio,2

R(tx) = 1

3

C3(tx)(
Z sm.

0

)2
e−E q

0 t y
−→ ĝq. (12)

2 The use of index “q” in ĝq should not be confusing to the reader. Here it simply
labels the light quark directly accessed from our lattices.
Fig. 2. Comparison of the effective binding energy extracted from C2(t) and from
C ′

3(tx) for the Set 2 and κ1 (cf. Table 1). Notice that the separation of the sources
t = tx − tfix and in our case tfix = −5.

All our fits are made on the common interval, 5 � tx � 8. On one
ensemble of our gauge-field configurations we also checked that
the value of ĝq extracted from Eq. (12) is fully consistent with
what is obtained if the computation is organized as in Eq. (9).

2.1. Axial current renormalization constant

The final ingredient necessary to relate the results of our cal-
culation to the continuum limit is the appropriate axial current
renormalization. We prefer to apply the same procedure to all our
data sets and determine non-perturbatively the axial renormaliza-
tion constant. To avoid any notational ambiguity we stress that in
this subsection we discuss only the light bilinear quark non-singlet
operators, P (x) = q̄(x)γ5q(x), Vμ = q̄(x)γμq(x), Aμ = q̄(x)γμγ5q(x),
i.e. no reference to the static heavy quark will be needed in this
subsection. To evaluate Z A(g2

0) we use the hadronic Ward identity
[15], which is readily derived by imposing the invariance under the
axial chiral rotations of 〈∑	x V i(x)Ai(0)〉, and 〈∑	x V 0(x)P (0)〉. One
then obtains

Z 2
V

Z 2
A

〈∑
	x

V i(x)V i(0)

〉

=
〈∑

	x
Ai(x)Ai(0)

〉
− Z V

∫
V

d4z

〈∑
	x

2m(0)
AWI P (z)V i(x)Ai(0)

〉
,

(13)〈∑
	x

A0(x)P (0)

〉
= Z V

∫
V ′

d4z

〈∑
	x

2m(0)
AWI P (z)V 0(x)P (0)

〉
, (14)

where the integration volume V (V ′) does (does not) include zero.
The bare quark mass defined via the axial Ward identity reads,
2m(0)

AWI = 〈∑	x A0(x)P (0)〉/〈∑	x P (x)P (0)〉. For notational simplicity
in the above Ward identities we wrote Z V ,A ≡ Z V ,A(g2

0,amq).

3. Lattice details and results

We use the publicly available gauge field configurations gen-
erated with N f = 2 dynamical light (“sea”) quarks which were
produced by using the Wilson gauge and Wilson quark actions.
In Table 1 we provide a basic information on the data sets used
in this Letter. Concerning the discretized Yang-Mills part, the con-
figurations explored in this Letter were generated by the stan-
dard Wilson plaquette action and (in one of the sets) by its im-
proved form, known as the Iwasaki action. The effects of dynamical
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quarks in the QCD vacuum fluctuations are simulated by using
the Wilson quark action, both the ordinary one, and its non-
perturbatively O(a)-improved version, which is usually referred
to as the “Clover”-action. From the publicly available configura-
tions we chose those with small lattice spacings, a � 0.1 fm. In
Table 1 we also provide the references containing detailed infor-
mation about the simulation parameters and the algorithms used
in producing these configurations. The values of lattice spacings,
given in Table 1, are obtained from r0/a, computed on each of
these lattices, extrapolated to the chiral limit and then by choos-
ing r0 = 0.467 fm. Other popular choice is r0 = 0.5 fm, which
would make the lattice spacing 7% larger. To our purpose that
error on fixing the lattice spacing is, however, completely imma-
terial. We should emphasize that we do not work in the partially
quenched situations. Instead, we fix the hopping parameter (κq) of
our valence light quark in correlation functions (5) and in those
appearing in Eqs. (13), (14) to be equal to that of the correspond-
ing dynamical (“sea”) quark, also listed in Table 1.

In this Letter we do not use the so-called “all-to-all” propaga-
tors. The feasibility study of using that technique in the compu-
tation of ĝ-coupling has been made recently in Ref. [10], showing
the substantial reduction in statistical errors. We plan to adopt that
technique in our future studies.

In Table 2 we provide the list of all results relevant to the
subject of this Letter, that we directly extracted from the correla-
tion functions computed on all lattices from Table 1. For an easier
comparison, the values of the pseudoscalar light meson masses,
as well as of the bare light quark masses inferred from the ax-
ial vector Ward identity, are given in lattice units. They are fully
consistent with those reported in Refs. [17–19]. Concerning the

Table 1
Basic information on the sets of unquenched gauge field configurations with N f = 2
dynamical Wilson quarks, the hopping parameters of which are specified for each
set. “WP” stands for the Wilson–Plaquette gauge action, and Clover is a standard
distinction to indicate the non-perturbative O(a)-improved Wilson quark action.
More information on each set of configurations can be found in the quoted refer-
ences. All lattice volumes are 243 × 48.
renormalization constants Z V ,A , they are obtained from the “light–
light” correlation functions which we computed on the lattice and
then combined to verify the Ward identities in Eqs. (13), (14). Af-
ter inspection, we found the common plateau-region for all our
11 data sets to be between 10 � t � 14. Finally, in the three-
point correlation function in Eq. (5) the fixed source operator is
set at t y = 13, and – as already mentioned – the results for ĝq

are obtained from the fit to a constant in Eq. (12), on the inter-
val 5 � tx � 8. We checked that our results remain stable when
t y = 12. Directly extracted values for the bare couplings ĝq , from
all of the lattice data sets considered in this Letter, i.e. before mul-
tiplying them by its corresponding Z A , are listed in Table 2. In
Fig. 3, instead, we plot the renormalized coupling ĝq , as a function
of the squared light–light pseudoscalar meson (“pion”), mass now
given in physical units (in GeV2). That conversion is made by com-
puting r0mπ for each of our data sets and then use r0 = 0.467 fm
(or, r0 = 2.367 GeV−1). We reiterate that opting for r0 = 0.5 fm
(r0 = 2.534 GeV−1), does not alter our final results in any signifi-
cant way.

The last step to reach the coupling ĝ , which is our final goal,
is to make the extrapolation to the chiral limit. To that end we
attempt either a simple linear fit or a fit guided by the expression
derived in HMChPT [20], i.e.,

ĝq = ĝlin
(
1 + clinm2

π

)
, (15)

ĝq = ĝ0

[
1 − 4ĝ2

0

(4π f )2
m2

π log
(
m2

π

) + c0m2
π

]
, (16)

where ĝ0 is then the soft pion coupling that is to be used in apply-
ing the HMChPT formulas when extrapolating the phenomenologi-
cally interesting quantities computed on the lattice to the physical
light quark mass limit. From Fig. 3 it is obvious that this task is
quite difficult if one is doing it separately for each β . More specif-
ically, applying the linear fit (15) to each of our data sets we
obtain

ĝlin = {
(0.40 ± 0.15)1, (0.52 ± 0.07)2, (0.54 ± 0.06)3

}
, (17)

while from the fit to HMChPT (16) we get

ĝ0 = {
(0.36 ± 0.11)1, (0.43 ± 0.04)2, (0.48 ± 0.04)3

}
, (18)

where the index on the right-hand side labels the data sets like
in Tables 1 and 2. As it could have been anticipated from Eq. (16),
the results of the HMChPT fit ( ĝ0) are lower than the results of
linear extrapolation ( ĝlin). The values obtained from different sets
are consistent within the errors. It is obvious that we cannot make
a precision determination of this coupling yet, but it is clear that
the unquenched lattice data also point to the fact that the ĝ cou-
pling is considerably smaller in the static-heavy quark limit than
in the case of the heavy charm quark. Since the heavy quark is
Table 2
Direct numerical results extracted from the correlation functions calculated on all of the ensembles of the lattices with parameters enumerated in Table 1.
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Fig. 3. ĝq computed from the ratio in Eq. (12) for all of our lattice data sets listed in
Table 1, after accounting for the axial current renormalization constants computed
on the same ensembles of gauge field configurations. They are plotted as a function
of the light pseudoscalar meson (“pion”) mass squared (in GeV2).

only a spectator, this information – that the 1/mn
h-corrections are

large – is significant, and somewhat surprising. If one simply feeds
the difference by a linear 1/mc-term, it is quite interesting to no-
tice that from the light cone QCD sum rules one get a similar size
is such a correction in spite of the fact that the absolute value for
the pionic couplings were considerably underestimated [4].

Since we are not aiming at a percent-level precision determi-
nation of this coupling we can try and see what happens if all
the data are combined and fit them together to Eqs. (15), (16). We
are, of course, aware that our three sets suffer from different dis-
cretization errors but since the lattice spacing is small (a < 0.1 fm)
and the common renormalization procedure has been applied to
all of them, it is reasonable to assume that the remaining dis-
cretization errors are not likely to matter, in view of our statistical
error (∼ 10%). If we combine all of our data, we then obtain

ĝlin = 0.51 ± 0.04, clin = (0.21 ± 0.12) GeV−1, (19)

while with the HMChPT formula (15) we have

ĝ0 = 0.44 ± 0.03, c0 = (0.40 ± 0.12) GeV−1. (20)

Another possibility is to exclude the data with m2
π � 0.6 GeV2,

which gives ĝ0 = 0.46 ± 0.04. We also checked that our result-
ing ĝ0 is insensitive to the variation of f ∈ (120,132) MeV, latter
being f phys.

π .
Before concluding we should compare our result to the existing

unquenched value for ĝ reported in Ref. [10]. The main advantage
of the calculation presented in Ref. [10] with respect to ours is
that they used the so-called all-to-all light quark propagators so
that their resulting statistical errors are much smaller. However,
the lattices we used here are finer and the associated discretiza-
tion errors should be smaller. In addition, here we also use various
gauge and quark actions, to show that our results are robust in
that respect too (of course within our error bars). A reasonable
comparison with Ref. [10] can be made by using our results from
Set-2 because these data correspond to the same gauge and quark
actions as those used in Ref. [10], although the lattice spacing we
use here is smaller. Comparing the bare quantities, we see that
– for example – when the pion mass is mπ ≈ 0.75 GeV, from
Ref. [10] we read gβ=1.8

q = 0.68(1), gβ=1.95
q = 0.69(1), while our

gβ=2.1
q = 0.69(6). Therefore they fully agree although our statisti-

cal errors are much larger. Using the perturbative (boosted) 1-loop
expression (bpt), the result for the overall renormalization con-
stant in all three cases are equal among themselves within less
than 1%, so that the renormalization constants computed in bpt
would not spoil this comparison, which seems to indicate that the
discretization errors are indeed small. The step in which we go
beyond Ref. [10] is that we evaluate the axial renormalization con-
stant non-perturbatively, Z npr

A . This is particularly important when
using the data obtained with Iwasaki gauge action because in that
case the strong coupling is very large and the use of perturba-
tion theory is far from being justified. Various boosting procedures
can lead to various estimates of Z A . We show that the boost-
ing procedure used in Refs. [10,18] leads to the values very close
to our non-perturbative estimate. More precisely, at our β = 2.1,
we have Z npr

A /Z bpt
A = 0.90(1),0.94(2),0.97(3),0.97(6), when going

from the heaviest to the lightest quark mass.

4. Conclusions

In this Letter we report on the results of our calculations of
the soft pion coupling to the lowest lying doublet of static heavy–
light mesons. From our computations, in which we use the fully
unquenched set-up and three different sets of gauge field configu-
rations, all produced with Wilson gauge and fermion actions, we
obtain that ĝ0 = 0.44 ± 0.03+0.07

−0.00. The second error reflects the
uncertainty due to chiral extrapolation and it is the difference be-
tween the results of linear fit and the fit in which HMChPT is used.
If our result is to be used in the chiral extrapolations of the phe-
nomenologically relevant quantities in B-physics the second error
should be considered as flat. The reason is that our central value
is obtained via HMChPT fit, but since the domain of applicability
of HMChPT is still unclear [2] – as of now – both results (extrap-
olated linearly or by using the chiral loop correction) are equally
valid.

On the more qualitative level, our results show/confirm that
this coupling is smaller in the static limit than what is obtained
when the heavy quark is propagating and is of the mass equal
to that of the physical charm quark, ĝcharm = 0.68 ± 0.07 [7]. It
is intriguing that the O(1/mn

c ) corrections are quite large for the
quantity in which the heavy quark contributes only as a specta-
tor. That feature can be safely studied on the lattice by means of
the relativistic heavy quark action of Ref. [21], and we plan to do
such a study. An obvious perspective concerning the determina-
tion of ĝ0 is to further reduce the errors, both statistical (by using
the “all-to-all” propagator technique, like in Ref. [10]), and the
systematic ones (in particular, those associated with chiral extrap-
olations). Once a per-cent accuracy is reached, it will be important
to study carefully the effects of mixing with the lowest heavy–light
excited states [those with j P

� = (1/2)+]. The expression derived in
HMChPT which accounts for those effects in ĝq already exist (first
paper in Ref. [20]), but their use requires the knowledge of an-
other pionic coupling, the one that parametrizes the S-wave pion
emitted in the transition from a (1/2)+ → (1/2)− states. Finally,
the numerical tests concerning the impact of inclusion of heav-
ier quarks in the vacuum fluctuations (s and c) on the size of ĝ0,
would be highly welcome too.
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