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a Ul. Bronowicka 85/26, 30-091 Kraków, Poland
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Charged B decays to three charged kaons are analysed in the framework of the QCD factorization
approach. The strong final state K + K − interactions are described using the kaon scalar and vector form
factors. The scalar non-strange and strange form factors at low K + K − effective masses are constrained
by chiral perturbation theory and satisfy the two-body unitarity conditions. The latter stem from the
properties of the meson–meson amplitudes which describe all possible S-wave transitions between three
coupled channels consisting of two kaons, two pions and four pions. The vector form factors are fitted
to the data on the electromagnetic kaon interactions. The model results are compared with the Belle and
BaBar data. Away from φ(1020) resonance, in the S-wave dominated K + K − mass spectra, a possibility
for a large CP asymmetry is identified.

© 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

Recently, charmless three-body decays of B mesons have been
intensively studied both experimentally and theoretically. On the
experimental side, Dalitz plot analyses of the charged B decays
were performed by Belle [1] and BaBar [2] Collaborations. Likewise,
several theoretical studies involving the B± → K +K −K ± decays
have been published [3,4] and [5].

Since charged kaons interact strongly, their long distance inter-
actions in the final states have to be well understood if one aims
at extracting weak decay amplitudes from the B to K K K decays.
In this Letter we go beyond an isobar model parameterization of
the B decay amplitudes and introduce additional theoretical con-
straints on the S-wave two-body K +K − interaction amplitudes,
which follow, in particular, from unitarity. In order to satisfy uni-
tarity in two-body interactions we construct scalar strange and
non-strange form factors which enter into the S-wave parts of the
decay amplitudes. These amplitudes are calculated in the frame-
work of the QCD factorization approach. In the construction of
form factors we use experimental information on the K +K − inter-
actions coming from experiments other than B decays, for example
from K +K − production processes in hadronic collisions or from
e+e− reactions. We apply also some low-energy constraints com-
ing from the chiral perturbation theory. Preliminary results of our
analysis concerning the B± → K +K −K ± reactions can be found in
Ref. [6].
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In Section 2 we formulate the theoretical model of the B+ and
B− decay amplitudes. Presentation of results and their comparison
with the experimental data are given in Section 3. Our conclusions
are presented in Section 4.

2. B± → K + K − K ± decay amplitudes

Inspection of the Dalitz plots of the Belle [1] and BaBar [2]
experiments reveals an accumulation of events for the K +K − ef-
fective masses below 1.8 GeV. Indeed, several mesonic resonances
which can decay into the K +K − pairs exist in this range [7].
Among them there are scalar and vector resonances which are
formed via the S- and P -wave final state interactions. In the first
approximation one can neglect their interaction with the third
kaon. This justifies using the QCD quasi-two-body factorization ap-
proach for the limited range of the effective K +K − masses (see,
for example Ref. [8]). The B− → K +K −K − amplitude is then ex-
pressed in terms of the following matrix element of the weak
effective Hamiltonian H :〈
K −(p1)K +(p2)K −(p3)

∣∣H
∣∣B−〉 = A−

S + A−
P , (1)

where the S-wave part is

A−
S = G F√
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the P -wave part is
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− F B K
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wu F K + K −

u (s23) + wd F K + K −
d (s23)

+ ws F K + K −
s (s23)

]}
4�p1 · �p2 (3)

and the interacting kaons are taken to be kaons 2 and 3. Fur-
thermore, s23 is the square of the K +(p2)K −(p3) effective mass
m23 ≡ mK + K − , while �p1 and �p2 are the kaon 1 and kaon 2 mo-
menta in the center of mass system of the kaons 2 and 3. The
scalar product of the kaon momenta can be written in terms of
the helicity angle ΘH :

�p1 · �p2 = −|�p1||�p2| cosΘH . (4)

In these equations G F is the Fermi coupling constant, f K =
0.1555 GeV and fρ = 0.220 GeV are the kaon and the ρ me-
son decay constants, MB , mK , mb = 4.9 GeV, ms = 0.1 GeV,
mu = 0.004 GeV and md = 0.004 GeV are the masses of the B
meson, kaon, b-quark, strange quark, down- and up-quarks, re-
spectively.

The functions Γ n
2 and Γ s

2 , present in the S-wave amplitude in
Eq. (2), are the kaon non-strange and strange scalar form factors.
The vector form factors F K + K −

q (for q = u, d and s), introduced in
Eq. (3), are defined through matrix elements
〈
K +(p2)K −(p3)

∣∣q̄γμq|0〉 = (p2 − p3)μF K + K −
q (s23), (5)

where |0〉 is the vacuum state. The K +K − pair in the S-wave is
then denoted by R S ≡ (K +K −)S . Similarly R P ≡ (K +K −)P stands

for the P -state. Furthermore F B→(K + K −)S
0 in Eq. (2) is the form fac-

tor of the transition from the B meson to the K +K − pair in the
S-state, χ is the constant related to the decay of the (K +K −)S

state into two kaons, and B0 = m2
π/(mu + md), where mπ is the

pion mass. We take F B→(K + K −)S
0 (m2

K ) = 0.13 [9] and we fit χ

to the data. Functions F B K
0 (s23) and F B K

1 (s23) are the B → K

scalar and vector transition form factors and ABρ
0 (m2

K ) = 0.37 [8]
is the B → ρ transition form factor. In our approximation, the ratio
ABρ

0 / fρ represents a general factor related to the transition from
B− to any (K +K −)P state and then its decay into the final K +K −
pair. For the case of the ρ meson this coupling to the pair of kaons
is effectively realized only above the K +K − threshold.

The weak decay amplitudes depend on QCD factorization coef-
ficients ap

j and on the products Λu = V ub V ∗
us , Λc = V cb V ∗

cs , where
V ij are the CKM quark-mixing matrix elements. In order to de-
scribe B decay into mesons M1 and M2 we follow Ref. [8] and
calculate the coefficients ap

j (M1M2) at the next-to-leading order in
the strong coupling constant at the renomalization scale equal to
mb/2. Here the M1 meson has a common spectator quark with the
decaying B meson. In the case of the B− → K +K −K − decays, M1
or M2 can be either kaon K − , or systems R S , R P . We take into ac-
count one-loop vertex and penguin corrections to ap

j (M1M2) but
neglect those due to hard scattering or the annihilation since they
are expected to be generally suppressed. In the QCD factorization
approach they receive logarithmically divergent contributions due
to soft gluon interaction which are “unavoidably model dependent”
(see Ref. [8]). We treat such soft interactions by introducing the
form factors constrained by data on meson–meson interactions,
taken from analyses of reactions other than the B decays. Under
these conditions we have ap

j (R S M2) = ap
j (R P M2), with their com-

mon value denoted below by ap
j (R S,P M2) ≡ ap

jy . We also use the

abbreviations: ap
jw ≡ ap

j (K −R P ) and ap
jv ≡ ap

j (K −R S ). The values of

coefficients ap
(M1M2) are given in Table 1.
j
In terms of the quantities introduced above one defines:

y = Λu
[
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4y + au
10y − (

au
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)
rK
χ

]
+ Λc
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8y

)
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]
, (6)

where

rK
χ = 2m2

K

(mb + mu)(mu + ms)
, (7)

wu = Λu(a2w + a3w + a5w + a7w + a9w)

+ Λc(a3w + a5w + a7w + a9w), (8)
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2
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]

+ Λc

[
a3w + a5w − 1

2
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]
, (9)
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2
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10w
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, (10)

and

v = Λu

(
−au

6v + 1

2
au

8v

)
+ Λc

(
−ac

6v + 1

2
ac

8v

)
. (11)

One can notice that in the expressions for the decay amplitudes
there are no transitions to the K +K − states of spin 2 or higher.
This results from the application of the factorization approach in
which matrix elements to spin states higher than one vanish. The
contribution of f2(1270) with its rather small branching fraction
to K K̄ (4.6%) is thus not included in this study.

Since two identical charged kaons appear in the final state of
the B− → K +K −K − decay, the amplitude of Eq. (1) has to be sym-
metrized

A−
sym = 1√

2

[〈
K −(p1)K +(p2)K −(p3)

∣∣H
∣∣B−〉

+ 〈
K −(p3)K +(p2)K −(p1)

∣∣H
∣∣B−〉]

. (12)

The symmetrized amplitude for the B+ → K +K −K + reaction
reads

A+
sym = A−

sym

(
Λu → Λ∗

u,Λc → Λ∗
c , B− → B+)

. (13)

The final state kaon–kaon S-wave interactions are dynami-
cally coupled with systems consisting of two and four pions. Thus
a system of three coupled channels: ππ, K̄ K and 4π (effective
(2π)(2π) or σσ , ρρ , etc.), labelled by j = 1,2,3, is considered
in the construction of scalar form factors Γ n

2 and Γ s
2 . Here we use

an approach initiated in [4] and recently developed in [10] for the
B± → π+π−π± decays. A set of the 3 × 3 transition amplitudes
T , describing all possible transitions between the three channels, is
taken from a unitary model of Ref. [11] (solution A). We introduce
two kinds of production functions Rn,s

j , labeled by n (non-strange)
or by s (strange):

Rn,s
j (E) = αn,s

j + τn,s
j E + ωn,s

j E2

1 + cE4
, j = 1,2,3, (14)

where αn,s
j , τn,s

j , ωn,s
j and c are constant parameters, while E rep-

resents the total energy and is related to the center of mass mo-

menta k j =
√

E2 − m2
j , with m1 = mπ , m2 = mK , m3 = 700 MeV,

and s ≡ E2 ≡ m2
K + K − . The three scalar form factors, written in the

compact row matrix form Γ n,s∗ , are given by

Γ n,s∗ = Rn,s + T G Rn,s, (15)
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Table 1
Leading order (LO) and next-to-leading order (NLO) coefficients ap

iy , ap
iv and ap

iw entering into Eqs. (6)–(11). The NLO coefficients are the sum of the LO coefficients plus
next-to-leading order vertex and penguin corrections. The superscript p is omitted for i = 1, 2, 3, 5, 7 and 9, the penguin corrections being zero for these cases.

ap
iy ap

iv ap
iw

LO NLO LO NLO LO NLO

a1 1.039 1.066 + i0.039
a2 0.084 −0.041 − i0.114
a3 0.004 0.010 − i0.005
au

4 −0.044 −0.029 − i0.02 −0.044 −0.032 − i0.019
ac

4 −0.044 −0.035 − i0.004 −0.044 −0.038 − i0.006
a5 −0.012 −0.010 − i0.007
au

6 −0.062 −0.057 − i0.017 −0.062 −0.075− i0.017
ac

6 −0.062 −0.062 − i0.004 −0.062 −0.079− i0.004
a7 0.0001 0.0 + i0.0001
au

8 0.0007 0.0008 + i0.0 0.0007 0.0007 + i0.0
ac

8 0.0007 0.0008 + i0.0 0.0007 0.0006 + i0.0
a9 −0.0094 −0.0097− i0.0003
au

10 −0.0009 0.0005+ i0.0013 −0.0009 0.0006 + i0.001
ac

10 −0.0009 0.0005+ i0.0013 −0.0009 0.0006 + i0.001
where Rn,s are rows of the production functions and G is the ma-
trix of the Green’s functions multiplied by the convergence factors
F j(p) = (k2

j + κ2)/(p2 + κ2). These factors, which reduce to unity
on shell (p = k j ), make finite the relevant integrals over the inter-
mediate momenta p. The parameter κ will be fitted to the data of
the BaBar [2] and Belle [1] Collaborations.

For both the non-strange and strange form factors we also con-
strain their low energy behaviour using the chiral perturbation
model of Refs. [12,13]. At low s values one writes the following
expansion:

Γ
n,s
j (s) ∼= dn,s

j + f n,s
j s, j = 1,2,3, (16)

with real coefficients dn,s
j and f n,s

j . Explicit formulae for the set
of non-strange form factors, in particular for the Γ n

2 presented in
Eq. (2), are given in Eqs. (24)–(35) of Ref. [10]. For the strange form
factors we have

ds
1 =

√
3

2

[
16m2

π

f 2

(
2Lr

6 − Lr
4

) − m2
π

72π2 f 2

(
1 + log

m2
η

μ2

)]
, (17)

f s
1 =

√
3

2

[
8Lr

4

f 2
− 1

32π2 f 2

(
1 + log

m2
K

μ2

)
+ m2

π

432π2m2
η f 2

]
,

(18)

and

ds
2 = 1 + 8(2Lr

6 − Lr
4)

f 2

(
m2

π + 4m2
K

) − 16Lr
5

f 2
m2

K + 32Lr
8

f 2
m2

K

+ m2
η

48π2 f 2
log

m2
η

μ2
+ m2

K

36π2 f 2

(
1 + log

m2
η

μ2

)
, (19)

f s
2 = 8Lr

4

f 2
+ 4Lr

5

f 2
− m2

K

216π2 f 2m2
η

− 1

32π2 f 2

(
1 + log

m2
η

μ2

)

− 3

64π2 f 2

(
1 + log

m2
K

μ2

)
. (20)

In these equations mη is the η meson mass, μ is the scale of the
dimensional regularization and f = fπ/

√
2. Using f = 92.4 MeV

and the chiral perturbation theory constants Lr
k , k = 4,5,6,8,

given in Table X of Ref. [14], we obtain the non-strange-sector
parameters: dn

1 = 1.1957, f n
1 = 3.1329 GeV−2, dn

2 = 0.7193 and
f n
2 = 1.6719 GeV−2 and their strange-sector counterparts: ds

1 =
−0.0016, f s

1 = 0.2393 GeV−2, ds
2 = 1.0410 and f s

2 = 0.6235 GeV−2.
For the form factors related to the third channel at low energies
we make the simplest assumptions dn
3 = ds

3 = f n
3 = f s

3 = 0, as in
Ref. [20].

The coefficients αn,s
j , τn,s

j and ωn,s
j are constrained by the val-

ues of the form factors at low energies. They are calculated using
the low energy expansion of Eq. (15) and are listed in Table 2.
The parameter c, which controls the high energy behaviour of R ,
is fixed while fitting the data.

Our scalar form factors satisfy the following unitarity condi-
tions:

Im Γ ∗ = T † DΓ ∗, (21)

where D is the diagonal matrix of the kinematical coefficients
which are proportional to the channel momenta k j in the center
of mass frame:

Dij = −k j
√

s

8π
δi jθ(

√
s − 2m j), i, j = 1,2,3. (22)

Presence of the resonances in the K +K − effective mass dis-
tributions (see Refs. [2,1]) is a direct manifestation of the K +K −
final state interactions. The most prominent resonance in the P -
wave is φ(1020). In 2005 Bruch, Khodjamirian and Kühn [15]
described the electromagnetic form factors for charged and neu-
tral kaons in terms of additive contributions from eight vector
mesons: ρ ≡ ρ(770), ρ ′ ≡ ρ(1450), ρ ′′ ≡ ρ(1700), ω ≡ ω(782),
ω′ ≡ ω(1420), ω′′ ≡ ω(1650), φ ≡ φ(1020) and φ′ ≡ φ(1680). Us-
ing quark model assumptions and isospin symmetry as in Ref. [15]
one can deduce the following expressions for the three P -wave
form factors F K + K −

q defined in Eq. (5):

F K + K −
u = 1

2
(cρBWρ + cρ ′ BWρ ′ + cρ ′′ BWρ ′′ + cωBWω

+ cω′ BWω′ + cω′′ BWω′′), (23)

F K + K −
d = 1

2
(−cρBWρ − cρ ′ BWρ ′ − cρ ′′ BWρ ′′ + cωBWω

+ cω′ BWω′ + cω′′ BWω′′), (24)

F K + K −
s = −cφBWφ − cφ′ BWφ′ . (25)

In the above equations BWi , i = 1, . . . ,8, are the energy-dependent
Breit–Wigner functions, defined for each resonance of mass mi and
width Γi as

BWi(s) = m2
i

m2
i − s − i

√
s Γi(s)

, (26)

and ci are the constants given in Table 2 of Ref. [15] for the con-
strained fit.
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Table 2
Parameters of production functions Rn

i (E) and Rs
i (E) defined in Eq. (14) for κ = 3.506 GeV.

i αn
i τn

i (GeV−1) ωn
i (GeV−2) αs

i τ s
i (GeV−1) ωs

i (GeV−2)

1 0.6731 −0.2511 1.5301 0.3743 −0.1090 0.1008
2 0.6116 0.0428 1.5232 0.7075 −0.1029 0.3256
3 1.2055 0.3589 3.1556 1.0028 +0.0979 0.4653
The B to K transition form factors have been parametrized ac-
cording to Ref. [16]:

F B K
0 (s) = r0

1 − s
s0

, (27)

where r0 = 0.33, s0 = 37.46 GeV2, and

F B K
1 (s) = r1

1 − s
m2

1

+ r2

(1 − s
m2

1
)2

, (28)

where r1 = 0.162, r2 = 0.173 and m1 = 5.41 GeV.

3. Results

Partial wave analysis of the decay amplitudes helps in the in-
vestigation of the density distributions in the Dalitz diagrams. In
Eqs. (2), (3) we have defined the S- and P -wave amplitudes to
which the double differential B− → K −

1 K +
2 K −

3 branching fraction
Br is related through the symmetrized amplitude A−

sym of Eq. (12):

d2 Br−

dm23d cosΘH
= 1

ΓB

m23| �p1|| �p2|
8(2π)3M3

B

∣∣A−
sym(m23,ΘH )

∣∣2
. (29)

Here ΓB is the total width of the B− meson and the kaon mo-
menta are:

| �p1| = 1

2

√
m2

23 − 4m2
K , (30)

| �p2| = 1

2m23

√[
M2

B − (m23 + mK )2
][

M2
B − (m23 − mK )2

]
. (31)

The helicity angle ΘH is kinematically related to the effective mass
m12 of the K −

1 K +
2 system:

cos θH = 1

2| �p1|| �p2|
[

m2
12 − 1

2

(
M2

B − m2
23 + 3m2

K

)]
. (32)

Due to the symmetry of the Dalitz plot density under the exchange
of the kaons K −

1 and K −
3 , one can define the effective mass m23

distribution integrated over the m12 masses larger than m23:

dBr−

dm23
=

1∫
cos Θg

d2 Br−

dm23d cosΘH
d cosΘH , (33)

where cosΘg corresponds to the value of cosΘH in Eq. (32) with
m12 = m23. The helicity angle distribution dBr−/d cos ΘH can be
obtained from Eq. (29) by integration over the specific range of
the effective mass m23.

Our aim is to describe the data of the Belle [1] and BaBar [2]
Collaborations in one common fit. The data chosen by us include
the total branching fraction for the decay B± → [φ(1020)K ±,

φ(1020) → K +K −], the averaged effective mass distributions
dBr±/dm23 for m23 smaller than 1.8 GeV, and the averaged he-
licity angle distribution dBr±/d cos ΘH for m23 < 1.05 GeV. The
distributions of the B± → K +K −K ± events are obtained from
the published data by subtraction of the background compo-
nents. The total number of data points for ten plots from both
collaborations is equal to 175. The theoretical distributions are
normalized to the total number of experimental events corre-
sponding to each data set. In our fit we used the averaged
B± → [φ(1020)K ±, φ(1020) → K +K −] branching fraction equal
to (4.06 ± 0.34) · 10−6 [7]. There are four fitted parameters: χ ,
κ , c and N P . The first three parameters are related to the S-
wave decay amplitudes and the fourth one, N P , is the common
P -wave normalization constant by which the amplitudes A−

P and
A+

P are multiplied. We have performed the fit to the 176 data
points obtaining the total value of χ2 equal to 343 and the follow-
ing parameters: χ = (6.44 ± 0.44) GeV−1, κ = (3.51 ± 0.20) GeV,
c = (0.084 ± 0.010) GeV−4 and N P = 1.037 ± 0.014. For N P = 1
we obtain the averaged B± → [φ(1020)K ±, φ(1020) → K +K −]
branching fraction equal to 3.73 · 10−6 which is within one stan-
dard deviation from the experimental value of (4.06 ± 0.34) · 10−6.
One sees that the absolute normalization of the P -wave is very
close to 1 which means that the decay amplitudes calculated in
our model are adequate.

Our value of χ parametrizes a large range of K +K − effective
mass up to 1.8 GeV and not just the region of f0(980). Therefore
it cannot be directly compared with the value given in Ref. [4]. In
addition, the estimate of χ given in Eq. (18) of [4] involves the
coupling constant of f0(980) to ππ while here we have coupling
to K K . Using g f0 K̄ K /g f0ππ = 4.2 from Ref. [19], a very rough esti-

mate similar to that given in Ref. [4] leads to χ ≈ 5.6 GeV−1. The
κ parameter was not used in Ref. [4] where only the on shell con-
tributions to the form factors were taken into account. The value
of κ = 3.51 GeV−1 is reasonably larger than the typical K K mass
considered. We have also done an analogous fit to the data us-
ing the three P -wave form factors based on the parameterization
of Ref. [5] obtaining similar values of parameters as those written
above, however with a higher χ2 value of 354.

Fig. 1 shows the moduli of scalar form factors Γ n∗
2 (s23) and

Γ s∗
2 (s23) which determine the functional dependence of the S-

wave amplitudes on the K +K − effective mass. There are two
prominent maxima of both form factors, one related to the f0(980)

resonance and the second one forming cusps due to the open-
ing of the third channel at 1400 MeV (in the present model re-
sponsible effectively for the production of four pions). Presence of
f0(980) leads to the threshold enhancement of the S-wave ampli-
tude. This effect can be directly studied in high statistics experi-
ment with a very good effective K +K − mass resolution of about
1 MeV and should be seen only a few MeV above the thresh-
old.

In Fig. 2 the K +K − effective mass distributions are shown
for two mass ranges and for the data from the BaBar Collab-
oration. At low mK + K − the spectrum is influenced by the P -
wave amplitude and dominated by the φ(1020) resonance. Above
1.05 GeV the S-wave amplitude is much more important than the
P -wave one. According to our analysis which uses the approach
of Refs. [11,21], the experimental maximum near 1.5 GeV can be
attributed to the f0(1400–1460) found therein in solution A. We
recall that in Ref. [21] the coupling constant of the f0(1400) de-
cay to K̄ K is much smaller than the corresponding coupling to
ππ . Let us notice that the model distribution depends on the
sharp 4π threshold located at 2 · m3 = 1.4 GeV which in reality
should be smoothed out by the four-body pion interactions not
taken into account in this quasi-two-body approximation. We have
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Fig. 1. Moduli of kaon scalar non-strange and strange form factors (solid lines) ob-
tained in our fit. The dashed and dotted lines represent the variation of their moduli
when parameter κ varies within its error band.

Fig. 2. The K + K − effective mass distributions from the fit to BaBar experimental
data [2] in the φ(1020) range (a) and between 1.05 GeV and 1.8 GeV (b). Theoretical
results are shown as solid line in (a) and as histogram in (b).

also studied the Belle [1] K +K − effective mass spectra and found
that the quality of their description is similar to that shown in
Fig. 2 for the BaBar data. Fig. 3 shows a more detailed compari-
son of the mK + K − theoretical distributions with the Belle data [1],
with events grouped in five ranges of m12 which is the other com-
bination of the K +K − effective masses. One observes an overall
general agreement of theoretical histograms with experiment, with
some surplus of experimental events in Fig. 2e for the case of the
highest slice of m12 (larger than 20 GeV2) where our model is not
fully applicable due to the proximity of the Dalitz plot edge.
Fig. 3. The K + K − effective mass distributions from the fit to Belle experimental
data [1] (a) for m2

12 < 5 GeV2, (b) for 5 GeV2 < m2
12 < 10 GeV2, (c) for 10 GeV2 <

m2
12 < 15 GeV2, (d) for 15 GeV2 < m2

12 < 20 GeV2 and (e) for 20 GeV2 < m2
12. The-

oretical results are shown as histograms.

Finally, in Fig. 4 we present the helicity angle distribution in the
K +K − mass range dominated by the φ(1020) resonance. With-
out the S-wave component of the decay amplitude the distribution
should be symmetric with respect to cosΘH = 0. However, we ob-
serve an interference effect which distorts the distribution. This
is a direct evidence of a non-zero part of the S-wave present
even under the huge peak of the φ(1020) resonance. A theoreti-
cal integration of the S-wave contribution to the spectrum in the
mK + K − range from threshold till 1.05 GeV leads to about 12% rel-
ative branching fraction. It corresponds to the average branching
fraction of 4.83 · 10−7 which is in agreement with the experimen-
tal upper bound of 2.9 · 10−6 found in Ref. [1]. This agrees also
with the BaBar estimate (9 ± 6)% of the S-wave fraction in the re-
gion of masses between 1.013 and 1.027 GeV [2]. In the range of
the K +K − effective mass from 1200 to 1800 MeV, which might
be relevant for the X0(1550) discussed in Ref. [2], the CP av-
eraged branching fraction corresponding to the S-wave is equal
to 4.42 · 10−6 which is larger than the total contribution of the
Φ(1020) resonance.

We have also studied the CP violation effects comparing the
magnitudes of the decay amplitudes of the B− and B+ decays.
While the moduli of the P -wave amplitudes for these charge con-
jugated decays are rather similar, the S-wave amplitudes behave
differently indicating an important CP violation effect which de-
pends on the mK + K − range. For the S-wave parameters written
above, starting from the K +K − threshold up to about 1.4 GeV,
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Fig. 4. Helicity angle distribution for the Belle data [1] in the K + K − effective mass
up to 1.05 GeV. The dashed line represents the S-wave contribution of our model,
the dotted line — that of the P -wave, the dot-dashed — that of the interference
term and the solid line corresponds to the sum of these contributions.

the modulus of the B+ S-wave amplitude is larger than the cor-
responding modulus of the B− amplitude. Then, above 1.4 GeV,
the B− moduli become larger than the B+ ones. Defining the CP
asymmetry as

ACP(m23) =
(

dBr−

dm23
− dBr+

dm23

)/(
dBr−

dm23
+ dBr+

dm23

)
, (34)

one gets very large asymmetries if one takes into account solely
the contribution of the S-wave. For example, A S

CP(1 GeV) =
−0.51, A S

CP(1.020 GeV) = −0.54, A S
CP(1.25 GeV) = −0.95, and

A S
CP(1.50 GeV) = +0.59 (here the superscript S stands for the

S-wave asymmetry). When the P -wave is included then the CP
asymmetry is reduced to: ACP(1 GeV) = −0.25, ACP(1.020 GeV) =
+0.029, ACP(1.25 GeV) = −0.85 and ACP(1.50 GeV) = +0.495. Let
us note a particularly small asymmetry in the range of the φ res-
onance, where the P -wave amplitude dominates, and an inversion
of the ACP sign above 1.4 GeV. Due to cancellations between the
ranges of the negative and positive asymmetries the resulting CP
asymmetry averaged over the mK + K − range from threshold up to
1.8 GeV is rather small, equal to −0.05. The averaged branching
fraction for the same mass range equals to 9.6 · 10−6. It is worth-
while to add that the S-wave gives to it the dominant contribution
of 5.8 · 10−6.

4. Conclusions

We have studied final state interactions between kaons in
the B± → K +K −K ± decays. An overall general agreement with
the Belle and BaBar data has been obtained. Our formalism is
based on the QCD factorization supplemented with the inclu-
sion of the long distance K +K − interactions. The latter are taken
into account through the functional dependence of the scalar
and vector form factors on the effective K +K − masses. A uni-
tary model is constructed for the scalar non-strange and strange
form factors in which three scalar resonances f0(600), f0(980)

and f0(1400–1460) are naturally incorporated. The scalar reso-
nance f0(980) leads to the threshold enhancement of the S-wave
K +K − amplitude. The K +K − structure seen near 1.5 GeV can
be attributed to the third scalar resonance. A potentially large CP
asymmetry is obtained in the mass spectrum dominated by the S-
wave. It originates from violent phase variations of the two kaon
scalar form factors which affect the K +K − effective mass depen-
dence of the S-wave decay amplitudes. In general one can best
study this effect away from the φ(1020) peak. We have shown,
however, that even under the φ maximum one observes nonneg-
ligible helicity angle asymmetry. This effect originates from the
interference between the S- and P -waves.

Our approach presented here for the B± → K +K −K ± decays
can be extended to study the B0 → K +K −K 0

S reactions for which
results of the time-dependent Dalitz analyses have been recently
published by the Babar [17] and Belle [18] Collaborations. For fur-
ther studies of the charged B decays new experimental data with
better statistics are needed. Such data already exist! For example,
the Belle Collaboration has now five times larger data sample than
that used in their publication [1] analysed by us here. Future re-
sults from LHCb and from super-B factories would also be very
useful.
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(2011) 542, arXiv:1008.3072 [hep-ph].
[7] K. Nakamura, et al., Particle Data Group, J. Phys. G 37 (2010) 075021.
[8] M. Beneke, M. Neubert, Nucl. Phys. B 675 (2003) 333.
[9] B. El-Bennich, O. Leitner, J.-P. Dedonder, B. Loiseau, Phys. Rev. D 79 (2009)

076004.
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