1,332 research outputs found

    A new CAE procedure for railway wheel tribological design

    Get PDF
    New demands are being imposed on railway wheel wear and reliability to increase the time between wheel reprofiling, improve safety and reduce total wheelset lifecycle costs. In parallel with these requirements, changes in railway vehicle missions are also occurring. These have led to the need to operate rolling stock on track with low as well as high radius curves; increase speeds and axle loads; and contend with a decrease in track quality due to a reduction in maintenance. These changes are leading to an increase in the severity of the wheel/rail contact conditions, which may increase the likelihood of wear or damage occurring. The aim of this work was to develop a new CAE design methodology to deal with these demands. The model should integrate advanced numerical tools for modelling of railway vehicle dynamics and suitable models to predict wheelset durability under typical operating conditions. This will help in designing wheels for minimum wheel and rail wear; optimising railway vehicle suspensions and wheel profiles; maintenance scheduling and the evaluation of new wheel materials. This work was carried out as part of the project HIPERWheel, funded by the European Community within the Vth Framework Programme

    Geometrical aspects of alpha dose rates from UO2 based fuels

    Get PDF
    Models for calculating dose rates of spherical particles as well as in fuel cracks are important for radionuclide source term estimations. Dose rates from UO2 based fuels were calculated for planar, spherical, and crack geometries. The escape probability for α-particles in spherical UO2 particles was derived as a continuous equation. The dose rate increased with increasing spherical radius due to the decreasing relative volume of the surrounding water layer. The model produced escape probabilities that were closely predicted by the theoretical derivation. It was shown that the dose rate in water filled fuel cracks with width smaller than the range of an α-particle led to dissolution rates that were lower per unit surface area

    Modelling radiation-induced oxidative dissolution of UO2-based spent nuclear fuel on the basis of the hydroxyl radical mediated surface mechanism: Exploring the impact of surface reaction mechanism and spatial and temporal resolution

    Get PDF
    A combined kinetic and diffusion model with an accurate α-dose rate profile was used to model radiation induced dissolution of UO2. Previous experimental data were used to fit the surface site reaction system involving the surface bound hydroxyl radical as an intermediate species for both UO2 oxidation and surface catalysed decomposition of H2O2. The performance of the model was explored in terms of sensitivity to spatial and temporal resolution as well as simplifications in the models describing the surface reactions and the reactions in solution. As a result, optimal conditions for running the numerical simulations were identified

    Shakedown analysis for rolling and sliding contact problems

    Get PDF
    There is a range of problems where repeated rolling or sliding contact occurs. For such problems shakedown and limit analyses provides significant advantages over other forms of analysis when a global understanding of deformation behaviour is required. In this paper, a recently developed numerical method. Ponter and Engelhardt (2000) and Chen and Ponter (2001), for 3-D shakedown analyses is used to solve the rolling and sliding point contact problem previously considered by Ponter, Hearle and Johnson (1985) for a moving Herzian contact, with friction, over a half space. The method is an upper bound programming method, the Linear Matching Method, which provides a sequence of reducing upper bounds that converges to the least upper bound associated with a finite element mesh and may be implemented within a standard commercial finite element code. The solutions given in Ponter, Hearle and Johnson (1985) for circular contacts are reproduced and extended to the case when the frictional contact stresses are at an angle to the direction of travel. Solutions for the case where the contact region is elliptic are also given

    Women and waterbirth: A systematic meta-synthesis of qualitative studies

    Get PDF
    Background: The practice of waterbirth is increasing worldwide and has been a feature of maternity services in the United Kingdom for over twenty years. The body of literature surrounding the practice focusses on maternal and neonatal outcomes comparing birth in and out of water. Aim: To undertake a review of qualitative studies exploring women's experiences of waterbirth. This understanding is pertinent when supporting women who birth in water. Methods: A literature search was conducted in databases British Nursing Index, Cumulative Index to Nursing and Allied Health Literature, Allied and Complementary Medicine Database, Maternity and Infant Care, Medline, Applied Social Sciences Index and Abstracts and Web of Science, using search terms waterbirth, labour/labor, childbirth, women, mothers, experience, perception and maternity care. Five primary research articles published between 2003 and 2018 which explored the views of women who had birthed in water were selected for inclusion. Using meta-ethnography, qualitative research studies were analysed and synthesised using the method of ‘reciprocal translational analysis’ identifying themes relating to women's experiences of birthing in water. Findings: Four themes were identified: women's knowledge of waterbirth; women's perception of physiological birth; water, autonomy and control; and waterbirth: easing the transition. Discussion and conclusion: Despite the paucity of qualitative studies exploring women's experiences of waterbirth, meta-synthesis of those that do exist suggested women identify positively with the choice. The experience of birthing in water appears to enhance a woman's sense of autonomy and control during childbirth suggesting waterbirth can be an empowering experience for women who choose it

    Engineering tyrosine-based electron flow pathways in proteins: The case of aplysia myoglobin

    Get PDF
    Tyrosine residues can act as redox cofactors that provide an electron transfer ("hole-hopping") route that enhances the rate of ferryl heme iron reduction by externally added reductants, for example, ascorbate. Aplysia fasciata myoglobin, having no naturally occurring tyrosines but 15 phenylalanines that can be selectively mutated to tyrosine residues, provides an ideal protein with which to study such through-protein electron transfer pathways and ways to manipulate them. Two surface exposed phenylalanines that are close to the heme have been mutated to tyrosines (F42Y, F98Y). In both of these, the rate of ferryl heme reduction increased by up to 3 orders of magnitude. This result cannot be explained in terms of distance or redox potential change between donor and acceptor but indicates that tyrosines, by virtue of their ability to form radicals, act as redox cofactors in a new pathway. The mechanism is discussed in terms of the Marcus theory and the specific protonation/deprotonation states of the oxoferryl iron and tyrosine. Tyrosine radicals have been observed and quantified by EPR spectroscopy in both mutants, consistent with the proposed mechanism. The location of each radical is unambiguous and allows us to validate theoretical methods that assign radical location on the basis of EPR hyperfine structure. Mutation to tyrosine decreases the lipid peroxidase activity of this myoglobin in the presence of low concentrations of reductant, and the possibility of decreasing the intrinsic toxicity of hemoglobin by introduction of these pathways is discussed. © 2012 American Chemical Society

    BVOC ecosystem flux measurements at a high latitude wetland site

    Get PDF
    In this study, we present summertime concentrations and fluxes of biogenic volatile organic compounds (BVOCs) measured at a sub-arctic wetland in northern Sweden using a disjunct eddy-covariance (DEC) technique based on a proton transfer reaction mass spectrometer (PTR-MS). The vegetation at the site was dominated by <i>Sphagnum</i>, <i>Carex</i> and extit{Eriophorum} spp. The measurements reported here cover a period of 50 days (1 August to 19 September 2006), approximately one half of the growing season at the site, and allowed to investigate the effect of day-to-day variation in weather as well as of vegetation senescence on daily BVOC fluxes, and on their temperature and light responses. The sensitivity drift of the DEC system was assessed by comparing H<sub>3</sub>O<sup>+</sup>-ion cluster formed with water molecules (H<sub>3</sub>O<sup>+</sup>(H<sub>2</sub>O) at m37) with water vapour concentration measurements made using an adjacent humidity sensor, and the applicability of the DEC method was analysed by a comparison of sensible heat fluxes for high frequency and DEC data obtained from the sonic anemometer. These analyses showed no significant PTR-MS sensor drift over a period of several weeks and only a small flux-loss due to high-frequency spectrum omissions. This loss was within the range expected from other studies and the theoretical considerations. <br><br> Standardised (20 °C and 1000 μmol m<sup>−2</sup> s<sup>−1</sup> PAR) summer isoprene emission rates found in this study of 329 μg C m<sup>−2</sup> (ground area) h<sup>−1</sup> were comparable with findings from more southern boreal forests, and fen-like ecosystems. On a diel scale, measured fluxes indicated a stronger temperature dependence than emissions from temperate or (sub)tropical ecosystems. For the first time, to our knowledge, we report ecosystem methanol fluxes from a sub-arctic ecosystem. Maximum daytime emission fluxes were around 270 μg m<sup>−2</sup> h<sup>−1</sup> (ca. 100 μg C m<sup>−2</sup> h<sup>−1</sup>), and during most nights small negative fluxes directed from the atmosphere to the surface were observed
    • 

    corecore