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INTRODUCTION

Object and Scope

The tests described in this report, on beams of pr~~

stressed and conventionally reinforced design, were under-

ta~en to dete~mine the effect of length of overhang at th~

reaction, existing inclined cracks, and h~ight of load point

.on the ultimat~ strength of p~~stressed beams without web

reinforceme~t. In additio~, these tests were used to modify
I

•

the shear compressipn theory proposed in Progress Report 17

and l7A(l,2)*.

This shear compression th~ory provides a.procedure

to compute the ultimate strength of p~estres~ed concrete

beams without web reinforcement subjected to combined bend-

~ng moment and shear. When it was o~iginal~y applied ~o

bea~s tested at Lehigh in 1958(3), some lack of agreement

betw~en theoret~cal predictions of ultimate strength and

corresponding experimental-values was apparent., This fact
\

•

•

necessitated a review and revision of the ~heory so that

closer agreement with test data could be obtained~ In addi~

tion it was necessary to determine the limitations on the

* Raised numerals in parentheses correspond to works liste~

in the references.
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practical application of ~he theory.

Outline of Tests

The results of twenty-ei~ht beam tests, of both rec-

tangular and i-shaped cross sect~on, a~e presented in this

report. Sixteen of these tests, used tq deter~ine the effect

of length of overhang and the effect of ~xisting inclined

~r~cks, were designated as Series C, and ar~ outlined in

Table I. All be~m~ in Seri~s C were of rectangular cross

section.

The remaining twelve beam tests were conducted to

evaluate the ~ffect of manne+ of loadin&. These t~sts wer~

designated,as Ser~es D, and are outli~ed in Table ~I.

Notation

The notation generally used in ~his report is con-

sistent with that recommended by the A.C.~. - A.S.C.E. ~oint

. 323(4)
Comm~1;tee . Several additiqnal terms are explained

•

•

wherever they appear in the text.
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DETAILS OF TEST SPECIMENS

Materials

Cement

Type III Portland Cement, manuf~ctured ~y the Lone

St~r Ce~ent Compaqy, was us~d in all beams. Deliveries

were made at ~pproximately two-week intervals, 4yriag the

period when beams were m~de, so as to avoid prolQnged

storage of cemen~ in the laboratory.

A8~regates

The coarse aggregate was crush~d +imestone havi~g

a maximum size of ~ in., ~nd a g~adation ~urve as sh9~

in Fig. 1. The tine aggregate consi~ted of Lehigh River

sand with a 'fineness modulus of 3.50, and a graqation as

shown in Fig. 1.

Concrete

The concrete was designed tp h~ve a 28-day strength

of 5500 psi':arta-~-' stump of 2-1/2 in.

The proportions of the mix by weight were:
I
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I
Cem~nt 1.00

Coarse Aggregate
(saturated surface dry) 3.27

Fine Aggregate
(sat~rated surface dry) 3.27

Water· 0.62

Properties of the concrete were determined from 6 ~ 12

in. cylinders and 6 x 6 x 36 in. modulus of rup~ure be~ms

poured and teste~ the same day as their cor+espon~ing beam.

The 9ylinders were' capped with carbo-vitrobond on the top

and bottom surfaces. The average cyli~der strength for

each beam is listed in Table III .

•
The modulus of rupture beam~ were loaded at the

third points on a 30 in. $pan. A comparison of modulus

of rupture strength with the compressive strength ~s shown
\

in Fig. 2. The average modulus of rupt~re strength of all

specimens tested was 660 psi.

The stress-str~in characteristics of two concrete

cylinders were determined. ~n both an average strain was

measured by means of two diametrically opposite SR-4

electrical resistance gages (Type A-9) connected in series,

Fig. 3 shows the non-dimensionalized ~tress~strain curves,

which practically coincide, and which are assumed to be
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indicative of the concrete in every b~am •

Reinforcing

The prestressed beams were 9f bond~d pretensioned

construction. In each case the tendons wer~ high-str~ng~h

stress-relieved 7/16 in. diam. strands an4 the stress­

strain rela~ionship for this steel is shown in f~g. 4.

Four of the beams in Series C were rein~orced with

No.6 deformed reinforcing bars with an average yield

strength of 32,900 psi •

Desc~iption of the Specimens

~wenty-two beams with rectangular cross sections

and six beams with I-shaped sectioqs were made and tested~

All beams had nominal out-to-out dimensions of 6 xl~ in.,

and the lengths varied from 5 ft.-ll in. to 11 ft.-6 in.

Spa~ lengths, and actual cross section dimensions measured

in the region of failure are given in Table IV .. Fig. 5

shows the details of the cross s~ctions inc~uding the

locat~on of longitudinal reinforcement.

All but four of the beams sh9~n in Table I1I were

longitudinally reinforced with 7/16 in. diam. 7-wire
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pretensioning strands. Those four (C13, C14, C15, C16)

were reinforced with No.6 deformed bars. All but three

beams (04, 05, 06) had a group of three stirrups placed

~t the supports. The stirrups consiste~ of No.3 deformed

bars bent and positioned as shown in Fig. 6. Inthese

three beams (04, 05", D6), the stirrups were inadvertently

placed six inches inward toward the load points'. Since

the inclined crack in these tests did not cross any por­

tion of a vertical bar, th~ effect of the misplaced stirrups

was considered negligible. Therefore all be~ms were regard­

ed as being without web reinforcement in the shear span .

Prestressed Beams (C5 through C12, 01 through 012)

Fourteen rectangular beams and s~x I-beams were pre­

stressed with each beam having four 7/16 in. diam. strands.

Initial as well as effective prestress values are given in

Table III. Variation of tension between strands in a single

beam was held within five percent. As observed in Table

III the effective prestress in t~e rectangular beams vari~d

from 46,200 psi to 55,000 psi, and the c9rresponding stress

in the I-beams varied from 39,500 psi to 51,100 psi. The

low prestress was used to reduce the resistance of the
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beams to inclin~d crackiqg. Four strands were used in

order to achieve a high ultimate str.en~th.

The beams in Series D were cast with monolithic. . ,

stubs designed ~o permit three different modes of load
I

application. T~e load was transferred to the beam as
I .. ' .,! '

fol:~ows : \

Beams Dl, D4, D7, D10 - Directly on top
"

Beams D2, DS, D8, Dll - On full stubs

Beams D3, D6, D9, D12 - On half ~tubs.
I

The mo~e of loading is shown in Tab~e II. Details of the

stubs are g~ven in Fig. 7.

Non~Prestressed Beams (C~ through C4, C13 through C16)

,

Two groups, each of four non-prestressed beams, were

tested. Beams Cl through C4 were reinforced with 7/16 ~n.

di~m. str~nd; Beams C13 through C16 were reinforced wi~h

No.6 deformed pars. The prest~ess shown in Table Il~ for

Beams Cl through C4 were used to eliminate sag of the

strands within each beam. The negative steel stresses

for Beam~ C13 trro~gh C16 indicates that the reinforc~ment,

due to shrinkage, underwent a sm~+l compre~s~on.



•

•

-8

Casting and Curing

The formwork consisted of pairs of steel channels

12 ft. long and 12 in. ,deep bolted to.a plywood base with

flanges facing outward. End sections consisted of steel

channels for the beams with strand reinforcement and ply­

wood for the remaining beams. Forms were placed so that

three or four beams could be cast end to end in a row.

Fig. 8 shows a photograph of the casting bed. The deformed

bars were held at the proper elevation by bar chairs and

tie wires. I~sections were formed by fastening timber

blocks to the webs of the side channels providing the

reduced section.

The concrete was mixed in six cu. ft. batches for

approximately five minutes. The mixer used was a Lancaster

Counter Current Batch Mixer, Model EB4. Two-wheeled

buggies were used to transport the concrete to the forms

where it was shoveled, vibrated and/or rodded into place.

Concrete for three 6 x 12 in. control cylinders and one

6 x 6 x 36 in. modulus of rupture beam was taken from each

batch concurrent with placement in the forms .

The curing operation consisted of wrapping the beams
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in wet burlap and keeping them under moisture-proof plastic

for four days, after which the side forms were removed.

This was followed by air drying for one day to allow place­

mentof Whittemore targets on the side of the beam. After

the adhesive for the targets had dried (one additional d~y),

the prestressing jacks were grad~ally released and the strands

~ere cut with an acetylene torch. Curing was then resumed

by cove~ing wi~h wet burlap. The beams ~ere cured, fo+ eight

weeks, after which the beams were ,air dried until the day

o~ testing.

Prestress Losses

Elastic losses and losses due to creep plus shrink-

age were estimated from strain measurements made on both

sides of ~he beams at mid-span. The strain measurements

were obtained with a Whittemore extensometer hav~ng a 10

in. gage length. The gage points consisted of aluminum

plates approximately 1/4 x 1/4 x 1/32 in. cemented at

various levels to both sides of the beam. Values of the

total tensile stress in the steel before release, immediat.el~

after release, ~nd at the time of test are given in Table III.

These stresses were calculated on the pasis that the change

in strain on the surface of the concrete at the level of the

steel is the same as the change in strain in the steel.
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LOADING APPARATUS, INSTRUMENTATION

AND OUTLINE OF TEST PROCEDURE

Loading Apparatus

The testing set-up is shown in detail in Fig. 9, and

a photograph of a test underway is shown in Fig. 10. Test

loads were applied with two 22-kip capacity Amsler jacks

which were bolted to a steel frame. Jack loads were measured

py a pendulum dynamometer.

Instrumentatj,on

Instrumentation consisted of Ames dial gages used to

measure vertical deflections and SR-4 elec~rical resistance

gages used to measure concrete strains, in addition to the

Whittemore targets described in the previous section. Photo­

graphs were taken of some of the beams during testing in

order to study crack patterns. No strain gages were placed

on any of the principal reinforcing steel in the prestressed

or conventionally reinforce~ bea~s •

Ames Dial Gages

A frame cons.tructed from perforated aluminum members

was set on knife-edge supports resting on the tqp surface
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of the concrete beam. Ames dials were mounted to the'

frame and were located so as to measure the beam deflec­

tion at the center line, at a quarterpoint, and usually at

the end extremities of the beam.

In every beam the strands or reinforcing bars pro­

jected outside the end faces. To detect relative slip, an

Ames dial was bolted to one of ~hese projecting tendons at

each end of the beam. The 4ials were read at each test

load increment.

Photographs

In the later s1=ages of loading, photographs were tfken'

of several beams before and after diagonal cracking. These

were useful in ascertaining the accuracy of the compatipilit~

condition. Every beam was photographed ~fter failure.

Outline of Typical Test Procedure

Preliminary

Immediately following placement of the beam in the

testing position, Whittemore gage readings were taken to

determine the final value of creep and shrinkage losse~.
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Also, the beams were whitewashed to facilitate observation

of crack patterns.

Test Procedure

The beams were loaded to failure in from fifteen to

twenty increments.. At each increment of load, all deflec­

tion and strain measurements were taken and the progress of

the crack pattern was marked directly on the beam. Defl~c­

tion readings were taken four or five minutes ~fter each

load increment was ~pplied. The strain readings were usually

begun just after the load increment was reached. At higher

loads, a secqnd series of strain readings was taken at the

same load ~ncrement. Numerals were stenciled on each beam

to indicate extens~pn of cracks at a corresponding load in

kips on each jack.

The rate of lo~ding was ~sually two kips per minute,

but in the later stages of loading this depended primarily

on the development of the cracks. All but two beams were

loaded directly to failure. These two, C6 and C10, were

loaded until inclined cracks formed, then completely un­

loaded so that the jacks could be move~ to increase the

shear spans. Finally, with increased shear spans, tnese
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beams were ~oaded to failure. The time require~ to test

qne beam varied from two and one-half to five hours.
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BEHAVIOR OF TEST SPECIMENS AND TEST ~ESULTS

This section describes the behavior of the test beams

under applied loads up to and including the ultimate load.

!he cracking and ultimate loads, the cause of final fa~l-

ure, the load-deflection rela~ions, photogr~phs of a beam

during testing, and the photographs of all beams after

testing are given.

Cracking Characteristics

Flexural and inclined cracks were the two types of

cracking identified during the course of the testing. The

nature of each of these types will be described in the

following paragraphs.

Flexural Cracks

The load that causes the first vertical crack to

form is ca~led the flexural cracking load and is listed

in T~ble V as Vfc for each beam. A flexural crack is

caused by the tensile stresses induced by bending moment.

In these tests when a flexural crack formed, it was of

hair-line width. The crack was detect~d by a very close

v~sual insp~ction of the beam. This cracking caused a -
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change in the shape of the lpad deflection curve. Before

cracking the load deflection curve was linear) while after

crack~ng the load def~ection curve was somewhat linear)

but the slope of the curve was decreased substantially.

Flexural cracks were ~sual+y the f~rst to appear; however

in some of the I-beams the inclin~d cr~cks appeared first.

Inclined Cracks

The load that causes the first inclined crack to

develop is called the incline~ cracking load and is denoted

in Table V by the symbol V. . An inclined crack is a fully
~c

-
developed non-vertical crack that is cau~ed by the ~ombined

effect of shear and bending moment.

The inclined cracking load is i~portant because it

marks a distinct change in the behavior of the beam. The

member had previously been resisting loads by b~am action)

while after formation of an inclined crack the load is

resisted by quasi-arch action. Furthermore) a peam with~

out w~b reinforcement cannot be reliably loaded beyond in-

clined cracking; that is) a beam with such cracks is ~anger-

ous and u~stable and has reached its practical ultimate

load.
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In rectangular bea~s there are two types of inclined

cracks as illustrated in Fig. 1).. One is the diagonal ten-

sion crack which may occur in a region previously ~ncracked

or above a flexure crack. See_Fig. ll-b. The second type

occurs as the extension of a flexural crack slightly out-

side one or both load points and will be called a flexure-

shear crack, See Figs. ll-c and ll~d.

The diagonal tension crack i~ initiated suddenly,

often developing while the load is b~~ng held constant on

the beam. This crack starts near the neutral axis of the

beam, and its development is rapid. The dia~onal tension

crack sh~ll be called an inclined cr~ck as soon as it forms.

An example of the development of this type of crack is

shown in Fig. lZ.

The flexure-shear crack is a flexural crack that

becomes inclined and extends with increasing load slowly

toward the load point. It is not considered fully develop-

ed until from the higher portion of the crack a new branch

forms and progresses rapidly dowpward at an inclined angle.

Classification o~ Failures

The ultimate load resisted by each beam is listed in
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Table V as Yu . This table also incl~des the par~~cular

mode of failure for each beam; F indic~tes flexura~ fail-

ure, S(SC) indi~ates shear failure in shear compression,

S(DT) indicates shear failure in diagonal ~ension, and B

indicates a bond failure. A discus~ion qf each mode of

failure is ~ncluded in subsequent paragraphs~

Load-Deflection Relations

Deflections were ~e~sured by dial gages at three

points for each beam, as shown in Fig. 9. Figures l~

through ZO, inclus~ve, show the relat}onships between

load and mid-span deflection gro¥P~d, as discussed in

later sections of the report, to correspon4 with the pur~

pose of testing. In the case of shear failures these
I

•

•

curves are valuable in judging the rel~t~ve strengths of

similar beams.

Two interesting facts relative to the behavior of

the beams are prought out by an examination of the load-

defle~tion relationships in Figs. 13 and 14. First of

all, the beams which were reinforced wit~ ~nprestressed

strands were consistently less rigid than the c9rrespond-

ing pres~ressed or conventional1.y reinforced beams. Secondly,
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it is clear that the prestressed beams per:f;~rme<;l b~tter,

in every instance, in the range of lOqd before cracking.

After craqking the ~oqd-d~~lection r~latipnships for the

prestresse~ beams approaphes coinc;i.dence with the cprres-

ponding convention~lly reinforced beam.

Typiyal Pho~ographs of a Beqrn ~ring Testing

Photographs of Beam C8 taken during the testing opera-
I

tion ~q:'e shown in Fig. 12. Tr~s~ i).lustrate the q~velop- .

ment qf th~ inclined crack as the load increases and will,

be ~urther discussed in the follo~ing ~ection~

Photographs of Beams Aft~r Testing

Figures 21 through 31, inclusive, are photographs

taken of eac~ beam after testing. The photographs are

arrqnged to correspond with the purpose of te~ting. Furr

ther discu~sion occurs later in the report .
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STRENGTH OF PRESTRESSED AND REINFORCED CONCRETE

BEAMS WITHOUT WEB REINFORCEMENT

Modes of Failure

There are four internal stress elements which can

combine to cause failure in a beam, namely: bending moment,

axial force, shear force, and to~sion. This report con-

siders only the effect of bending moment and shear forces.

As previously indicated, failures in this series of tests

were.classified as follows: flexural, shear compression,

diagonal tension, and bond.

Flexural Failure

Flexural failures may result in both under-reinforceq

and over-reinforced beams. In an under-reinforced bea~,

failure occurs after yielding of the steel, while in an

over-reinforced beam, failure occurs before the stress in

the steel reaches the yield level. In both cases, the

failure mechanism is characterized by crushing of the con-

•
crete in the compression zone. The flexural failure

!

•

phenomenon is basically the same for both rectangular and

I-sections.
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Shear Compression Failure

Shear compression failure is due to the combined

effect of flexural and shear forces. The development of

a flexure-shear crack that may lead to a shear compres-

sion failure has been described in the previous section.

Once such a crack has developed, it produces two effects

on the beam being tested which combine to cause destruc-

tion of the beam. First, the flexure-shear crack produces

a concentrated angular rotation in the beam, which locally

increases stresses and tends to induce a premat4re moment

failure. Second, the beam resists t~e applied external

load by quasi-arch a~tion. When the flexure-shear crack

has developed fully to the point 0; being an inclined

crack, the quasi-arch may not be a stable structure, and

strength available after this crack has formed is not

reliable.

Concerning the first effect, the concrete at the

top of the flexure-shear crack is subjected to high normal

and shear forces. As the applied load increases these

forces increase, and the inclined crack penetrates further

into the "compression zone". This decreases the amount of

concrete available to resist the normal and shear forces.
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As this concrete area takes larger and larger forces, the

beam tends to redistribute the app~ied load by transferring

some of the shear through the longitudinal reinforcement.

This causes the crack to form another br~nch, which initiates

at a high position on the crack and progresses rapidly down-

ward at an angle 9f approximately 45° as indicated in Fig.

11. When this happen~, the second effect is imposed on

the beam. The beam is resisting the external loads by

beam action and quasi-arch action. This develo'pment of

the crack tends to make the beam structure an unstable one,

depending on the particular location of the crack and the

load or loads. The load which causes this development of

the flexure-shear crack is called the inclined cracking

load; it must be assumed that this is the ultimate load

in a beam without web reinforcement, since the beam cannot

reliably sustain greater loads. However, it is the combined

effect of the bending and concentrated angular rotation,

plus the possibly unstable quasi-arch action which causes

final destruction. The maximum load is reached when the

concrete at the top of the inclined crack is crushed or

otherwise cannot be maintained in equilibrium.

After a flexure-shear crack forms, its progress is

restricted by the presenc~ of the load points when the
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beam is loaded on top. If the beam is npt loaded on top,

or if the loa,ds are not stationary, shear' compression.. ,',;,'. '; ...

failure will probably not occur.

Diagonal Tension Failure

Diagonal tension failure is a shear failure d~e to

the combined effect of flexural and shear stresses. It

occurs when a diagonal tension crack (an inclined crack)

appears. The di~gonal tension crack may occur in a region

previously uncracked or above a flexural crack. From the

starting point, the crack progres~es rapidly toward the

load point and away from it. The diagonal ~ension crack

has a smaller angle of inclination than a flexure-shear

crack. However, it is easier to differentia,~e ~etween

fle~re-shear and diagonal tension cracks on the basis

of beam behavior. When a flexure-shear crack develops

fully and becomes an inclined crack, the resulting failure

is usually a gradual, non-brittle type. A diagonal ten-

sion crack, however, may propagate without any substantial

increase in load. 4fter the diagonal tension crack has

appeared, the stability of the beam is uncertain.

In non-rectangular beams with thin webs, crack forma-

tion is sudden. The presence of diagonal tension cracks
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alters the behavior of the beam immediately. Sozen and

others have developed an analysis of the streagth and

modes of failure for I-beams (5) . The six I-beams tested

in Series D can be classified by means of this analysis.

Four of these beams failed in diagonal tension by web

crushing, and two by separation of the tension flange

from the web. The beams that failed by web crushing were

Beam D10 having an 18 in. shear span and loaded on the

top, and Beams D7, D8, and D9 with 30 in. shear spans

and loaded on top, on full stubs, and on half stubs,

respectively. The beams that failed due to a splitting

action nea! the junction between the lower flange and the

web were Beams Dll and D12, having full-stub and half-

stub loading, respectively.

Bond Failure

Two beams, e4 and e12, failed because there was

"insufficient distance,between the end o.f the beam and the

point where the inclined crack crossed the longitudinal

strand reinforcement, to develop the force in the strand.

needed to lead to either a shear compression or flexural

failure. As a result, strand slip occurred, and this was

termed bond failure.
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Conclusions

If one categorizes diagonal tension failure and

shear compression failure under the heading of shear fail­

ure, and disreg~rds bond failure as due to poor dimensiop­

al proportioning, there are on~y two modes of beam failure,

namely shea~ failure and ~~ex~re failure. Diagonal ten­

sion and ~hear compression failures are both caused by

the for~ation of an inclined crack. As previously dis­

cussed, the inclin~d cracking lQad should be considered

the ultimate loa~ in beams without web reinforcement.
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REVISION OF S~EAR COMPRESSION THE9RY

. The method proposed in Progress Reports 17 and

(1,2) .
l7A proved to be Lnadequate when comparisons were

made with experimental results, as can be seen from Fig.

32. This led to the decision to ~ttempt a revision'of

the method to ~ncrease its accuracy. In order that the

reader will not have to refer ba~k to the original reports~

tre shear compression theory will be summarized in sub-

sequent paragraphs.

Basic Concept of the Shear Compression Theory

The fundamental concept of the theory lies in the

compatibii~ty condition which states that deformations

in the zone of inclined cracking result from a "shear

rotation" about a neutral axis of the failure section when the

cqncrete in a region above the inclined crack reaches a

l~miting state of stress determined by the Mohr failure

criterion.

Development of the Shear Compression Theory Equatiops

A brief discussion of the theory will be undertaken

wi~h the aid of Fig. 33 which consists of an elevation
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view and an end view of a typical beam, together with a

free body diagram of the segment to the left of the critiG~l

section.

Failure is impending and a large crack has formed'

denoted by BIOle in the elevation view of Fig. 33. The

crack formation is accompanied by a rotation about the

point 0 I such that the angle BI aI,e, subtended by the· ex-

posed reinforcing steel, is assumed equal to the angle

Aloin. The angle AiOln defines the amount of compressive

deformatio~ of the longitudinal fibers of the coqcrete

above and to the left of the poin~ of rotation 0 1
• The

value ~L top was approximated by evaluating the total

strain in the top fibers from the point AI to a point

above point B I . The value~.f.. b ,on the other hand,
ot.

..

was obtained by utilizing data from pullout tests involv-

ing various types of reinforcement embedded in concrete

cylinders. Bond coefficients were employed to evaluate

the three types of reinforcement considered, namely plain

round bars, deformed bars, and prestressing strands.

A consideration of the free body diagram in Fig. 33

will facilitate derivation of t~e equation for the moment,

Msu ' at impending shear compression failure. The diagram
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shows the critical combipation of forces Vu ' Cu ' and Tu

at failure, and in addition an interna~ concrete qormal

stress, ero ' is d~picted. The stfess lJo is assumed to

be uniform over an area defined by the distanc~, hl ,

measured from the top fiber. The di~tance hl , also

locates the center of rotation, 0'. The equation expres~-

ing the internal be~ding moment is

M = Csu u (1)

Recognizing that the term, Cu ' is equal to the product of.

the uniform stress, ~o' and the ~rea acted upon, b.hl ,

Eq. (1) becomes

Finally, after regrouping terms,

(3) -

T~~ value of Msu can be calcula~ed if expressions

for «o~ and hl/h are obtained. The mean limi~ing com­

pressive stress, ~o' is based on the Mohr failure criter­

ion. The essence of this crite~ion is that failure will

occur in the concrete when a combination of shearing ~nd

normal stresses reach cert~in va~ues defined by Mohr's
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.. envelope of failure. The derivation results in the ~ollow-

ipg expres~ion for ~o'

f'c
(4)

1 + 3 ( Vh )2
M

() = ....,.--....,.-~..,.....---

o

where f~ is the strength of a 6 x 12 ~n. concr~te cylinder,

and v/~ is the shear-moment ratio, ass~ed to be constant

for any given l0ading mode. The val~e of ~o' for ~ given

strength of concrete, thus depend~ on the ~atio ViM corres-

pond~ng to t~e ~pplied loa~ing.The value of hl/h is

found by consideration of equilibrium for the free body
_.

of Fig. 33, and the assumption of equal angles B' 0' C and_

AIO'n previously discussed. The final result is

~
' sina. tanO!

1 + O. 75 f o -....----,.,......,-,­
Ecu·'h·

=

sinO! . tanO!
E ·hcu

+ 1.65

(5 )

where

Eo = effective prestressing strain in the steel
plus elastic strain in the concrete at point
of resultant force in the prestr~ssing steel
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E = ultimate concrete strain
cu

A = 10,000 ):

A' = (0.5 + 2590 ) K'd. f·c
d = bar or strand diameter

K' values for r~inforcing s~eel were given in

Progress Report l7A as follows:

Plain round bars
Deformed bars
Prestressing strands

Non-rusted

5.5
3.0
2.0

Rusted

4.0
2.0
1.5

•..

If it is assumed that the values o~ a and e~u are

45 degrees and 0.0036, respective~y, then

1 + 10.5

10.5 0-0

pE
~ A/h + 1.65

(6)

•

Thus the value of the ultimate mom~nt,Msu' c~n be calcu-

lated using tq~ above ~quations and appropriate para-

metric valu~s.

New Evaluation of Bond Parameter
" '

A study of the theory revealed th~t the bond para-

meter, A, is the largest single uncertainty~ It was shown

in Progress Report 17 that
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(7)

•.

where AI/kId is presu~ably a function of the concr~te

strength. An examination of Fig. 34, wherein the relation-

ship expressed by Eq. (7) is plotted, indicates a consider-

able scatter of values and corresponding lack of correlation.

Fort~nately, ultimate moment values are quite in~

sensitive to small variations in the bond parameter and

the ~ value for a given type of reinforcement can be

chosen as the average value from many beam tests. These

values were act~ally calculated by working back from experi-

mental results. With Msu known from tests, and ~olving

Eq. (3) as a quadratic in hl/h, we get

•

hl
- = 1 ­
h (8)

From Eq. (6), it can be shown that

hi
2

1 - 1.65
A 0.00907

h
-=

h ero hl-.- - EopE h

(9)

If the term ,I{ is denoted as a. new bond par.ameter, such
"
i that

A A Al
(10)= =-

10,000 d d
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then it will be possible to obta~n the~e ){ values knowing

that

.' A
d

= J
l;i

h
d

(11)

More specifically, from beam test data it ~s pos~ib~e to

successively evaluate hllh and Alh from Eqs. (8) and ~9),

respectively; after which A Id and finally A is found

•

by ~eans of Eqs. (11) and (10), resp~ctively. Available

data, shown in Fig. 35, resulted in the following average

values of A :

(a) Structural grade def9rmed bar ..•..••••...•.. Z~73

(b) Prest~~ssing strand ••...•••.•.••..••••••. ~ •. 0.32

(c) Prestressing wires, individually bonded ...•• 0.96

Compatibility Condition Reviewed

The compatibility condition.or idea~i~ed mechanism

of failure proposed in the theory was investigated in

conjunction with several of th~ beam tests in an 'effort

of establish its validity. This mechanism may be briefly

described as a rotation about the end pf tQe principal

inclined crack in ~he region of failure.

Beams of Series C were chosen for this study and
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the procedure was to photograph the crack pattern during

the final loading increments. Measurements on tpe photo­

graphic print of relat·ive movement of reference points

adjacent to the principal crack enabled the establish­

ment of the actual center of rotation for each of the

beams. The study revealed that the center of rotation

is not at the end of the inclined crack (Point a' in

Fig. 33), but about a point which is approximately qt

the same elevation as the top of th~ crack and several

inches from point A' in the direction of increasing mom~nt.

The rotation can actually be resolved into two components.

One is a. rotation about a', as postulated in the theory,

and the second is a vertical displacement. The fact,

however, that the observed location of the point of rota~

tion was near the end of the diagonal crack, led to the

conclusion that the compatibility condition from which

Eq. (5) is derived does not require revision and may be

used in its original form. Therefore the revision of

the theory centered about the bond parameter A.

Discussion of Limiting Stress

The method being considered is a shear compressioQ

theory that predicts the strength of a member wh~n the
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concrete above the end of the diagonal crack crushes, or

is incapable of carrying additional loading. This limit­

ing stress or crushing stress is called ~o and is dep~n9­

ent on the magnitude of the normal and shear forces, as

indicated by Eq. (4). The effect of the shear force is

to reduce the normal force needed to crush the concrete.

However, at ultimate load, the beams tested during this

investigation did not necessarily behave in accordance

with the shear compression theory. For example, th~re

were cases where failure occurred in crushing of the con­

crete inward of the load point, in a region of zero shear •

For example see view of Beam C4 in Fig. 25. In this in­

stance the limiting stress 'should have equalled the

cylinder strength and not some lesser value given by Eq.

(4), since the shear force is zero in the region between

the load points. However, in this investigation it was

assumed that Eq. (4) was valid in all cases regardless

of the location of final crushing •
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COMPARISON OF REVISED THEORY WITH TEST RESULTS

Figure 32 shows values of ultimate moment, calculated

by the original-as well as the revised method, c9mpared with
(3,6,7,8,9)

the experimental results of several investigations.

The points referred to as "original theory" were computed

by means of Eqs. (7), (6), and (3); while those referred

to as "revised theory" were computed by Eqs. (11), (6) and

(3) using the modified ~ values. This figure generally

shows an increase in correlation and a decrease in scatter

when the original theory is compared to the revised one.

Exceptions are the tests' of Zwoyer(6) and Clark (9) . In

these cases the scatter was slightly increased with applica-

tion- of the revised theory.

The results of the beam tests reported herein were

not all used in the comparison shown in Fig. 32. Resul~s

from tests of Beams C3, C4, C12, CiS, and C16 were excluded

because it was apparent that their short shear span pre-

cluded any possible diagonal tension failure and consequently

forced failure either in flexure or bond. Beams C6 and C1G

were excluded bec~use they were tests to determine the effect

- of reloading. All of the D-Series of tests, except Be~ms Dl

and D4, were excluded because of the fact that the loading

had been transmitted by stubs.
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I~ must be coqcluded that where~s the revised theory

does, indeed, seem ~o reduce the discrepan9y b~twe~n the

calculated results and the corresponding expefim~ntal

val~es fqr the numerous inve~tigations considered, there

is sti~l need for further improvement .
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DISCUSSION OF CONDITIONS AFFECTI~G ULTIMATE STRENGTH

Beams tested in this investigation were used to

ascertain the effect of length of overhang at the react­

ion, the influence of existing inclined crac~s, and the

height of load point, on ultimate strength. The beams,

designate4 as Series C, and loaded as shown. in Ta~le I,

were used to evaluate effects of length of overhang and

existing inclined cracks. The height of load point was

the main variable in the testing of tAe beams of Series

D, as outlined in Table Ii.

A detailed analysis of these tests and th~ results

obtained follows.

Length of Overhang

General

A short overhang may produce two different effects

that tend to lower the ultimate strength of a prestressed

concrete beam. First, a short overhang may cause the pre­

stress transfer zone to be positioned on the test span in

a region of high shear. Within the prestress transfer

zone the concrete is subjected to smaller ~ompressive
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stresses than at other sections of the beam and hence

lower resistance to cracking and shear. Second, a short

overhang may result in a bond failure of the ~einforce-

ment due to inadequate embedment .

.The first group of 12 beams in Table I contains si~c

beams with overhangs of 2-1/2 in., and six with overhaQgs

of 24 in. The main variables were type of reinforcing,

intensity of prestress, and shear span. The reinforcing

was either prestressing strands or deformed bars. Strands

in Beams C5, C8, C9, and C12 had effective prest~ess

values of 52,600 psi, 54,400 psi, 49,100 psi, and 46,200

psi respectively, while Beams Cl, C2, C3 aqd C4 were

essentially without prestress. The remaining four beams,

C13, C14, C15, and C16, were made with non-prestressed

deformed bars. The shear spans were either 18 in. or 30

in.) except for Beam C9 which had a 27 in. shear span.

Effect of Type of Reinforcing

The study of the effect of the type of reinforcing

is summarized in Table VI 0' which contains are-grouping

of data from Table V and also gives computed ultimate

(1,2)
loads based on the shear compression theory , and
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(10)
on a method based on a condition of pure f+exure .

The data in Table VI are divided into two groups. Group

I contains beams with a 30 in. shear span and Group II

beams with an 18 in. shear span. Each group includ~s

two beams with 24 in. overhang beyond the supports and

two with 2-1/2 in. overhang. One beam of each pair

was reinforced with untensioned st~ands and the second

with conventional reinforcing bars. Figur~s 21, 23,

25 and 26 show photographs of all beams listed in Table

VI after testing to ultimate load.

The results in Table VI indicate that the shear

compression theory works reasonably well for a 30 in.

shear span for both types of reinforcing. It is not

possible, however, to compute with any practical degree

of accuracy the ultimate load based on the assumption of

pure flexure, as evidenced by the ratios of Vu:VBA which
,

range from 0.64 to 0.94 for the four beams of Group I.

The observed failure modes_indicated shear compression

for Beams Cl and C2 reinforced with unprestressed stran4s,

and diagonal tension for Beams C13 and C14 with defor~ed

bars. The length of overhang was significant for Beam

C14. It appears from Fig. 23 that the cause of failure
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in C14 was a splitting along the reinforcement at the

end of the beam, thereby reducing the ultimate strength

and explaining the poor correlation with computed values.

The beams of Group II, in Table VI, with the excep­

tion of Beam C4, failed in flexure. Beam C4 might also

have ~ailed in flexure had not a breakdown in bond occurred.

The computed values of V
BA

show good agr~ement with experi­

mental results, whereas the Vw values are consistently

less than the corr~sponding test results. The ultimate

load of 23.0 kips for C4, loaded on an 18 in. shear span,

was well above the corresponding value of Vw' even though

strand slip occurred. In this case it appears that a

2-1/2 in. overhang is not sufficient, and this may be

also true for shear spans longer than 18 in.

A general observation, substantiated by Figs. 21

and 23, is that the cracking characteristics of the beams

reinforced with conventional deformed bars were consis­

tently more favorable from a practical viewpoint than

were the companion beams reinforced with unprestressed

strands. This is evidenced by the closer spacing and

smaller widths of cracks in the beams reinforced with

deformed bars.
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Effect of Prestress

The effect of prestress is summarized in Table

VII, which is arranged in a form similar to Table VI

except that data from only three beams was available

in Group II; however a third group is shown consisting

of one beam with a 27 in. shear span. The objective

here is to compare four beams having an effective pre­

stress of approximately 50,000 psi with three beams

having practically no prestress.

The results in Table VII show, as before, that the

shear compression theory works reasonably well for beams

with 30 in. shear spans and also for Beam C9 with a 27

in. shear span. Computed load values based on flexure

theory, on the other hand, are consistently larger than

the experimental values for these beams in Groups I and

III. The effect of prestressing was to increase the load­

carrying capacity of the beams and to change the mode of

failure from shear-compression in the unprestressed beams .

to diagonal tension in the prestressed beams. The ratio

of loads at failure of prestressed Beam C5 to unprestressed

Beam Cl was 1.22, and the ratio for prestressed Beam C8
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to unprestressed Beam e2 was 1.04. The various failure

modes may be studied in Figs. 21 through 26 .

Table VII further shows that the shear compression

theory is not satisfactory for shear spans of 18 in., ~s

is evidenced by the low computed values for Group II.

These failures, when slip does not occur, are of the

flexure mode and this is substantiated b~ the good agree~

ment with the calculated value for Beam e3. It is reason-

able. to believe that if slip had not occurred in Beam e12

its load carrying capacity would have been substantially

higher due to the effect of prestressi~g. This would

have been consistent with the trend observed with the

beams of Group I, and indicates that ~ 2-1/2 in. overhang

is insuff~cient for beams loaded on a shear span to total

depth ratio of 1.5.

Effect of Shear Span

,

To summarize, it would appear that, for the type of

beams tested, a shear span of approximately 30 in. will

result in shear compression or diagonal tension failures

that can be predicted with fair accuracy by shear qompres-

sion theory. If the shear span is only 18 in., the flex-

ure theory will predict the ultimate strength with gr~ater
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accuracy. This applies whether or not prestlTessing. is

employed, prov~ded that strand slip does not occur. In

cases when slip occurs, the beams failed at a point inter~

mediate between the computed ultimate loads based on shear

compression theory and that of pure fle~ure. It is reason­

able to believe, in these case~, that the loaqin~ might

have developed the full flexural strength, VBA , had not

slip taken place.

Conclusions

It was observed that a 24 in. overhang provides

adequate embedment for the reinforcement, but that ~

2-1/2 in. overhang was inadequate when the test beams

were loaded on a shear span to total depth ratio of ~.S.

Effect of Existing Inclined Cracks

General

It is conceivable that bridge members, which are

subjected to moving load~, might develop inclined cracks

due to the load at one position, but subsequently fail

with the load at a different position. Moreov~r, the

beam capacity under such conditions. might be less than
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would be the case if the loading were applied at a station-

ary position.

Results of Tests

Beams C6 and C1G were tested by loading in two stages.

In the first stage, loading was applied gradually until one

or more inclined cracks had formed. After unloading the

jacks were shifted so that in the second stage the beam

could be loaded to ultimate with a greater shear span.

Loading diagrams are included in Table I, and results of

the tests are given in Table VIII. Photographs of the re-

loaded beams are shown in Fig. 27, along with comparison

beams which were tested in a single stage.

Beam C6 is the first specimen listed in Table VIII

and was initially loaded with a shear span of 30 in. A

distinct inclined crack formed at a load, Vic' of 14.7

kips. The comparison beam for this stage of loading is

Beam C5, which was loaded without moving the load points

to an ultimate load of 15.5 kips. The value of Vic ~s

94 percent of the ultimate strength of the comparison

Beam C5. Load was then re-applied to Beam C6 and taken

to ultimate usi.ng a shear span of 36 in. Beam C7 having
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'a shear span of 36 in., and an observed ultimate strength

of 13.2 kips, is used for a comparison beam. T~e ultimate

load for Beam C6 was 11.7 kips, or 89 percent of the

~trength of Beam C7.,

The second reloaded beam, Beam C10, was taken slightly

above its inclined cracking load of 16.2 kips, which was

74 percent of t~e ultimate cap~city of comparison of Beam

Cll. Reloading was accomplished with the ~hear span in-

creased to 30 in., and the ultimate observed strength was

12.8 kips, which was 83 percent of the capacity o,f com-

,parison Beam C5 .

An examination of Fig. 27 revea~s that the failure

crack, in the case of the reloaded beams, terminated just

outside the final load point. On the other hand, each of

the Beams C5 and C7, which were loaded to ultimate in one

stage, had the failure crack extend underneath the load

point. This behavior is consistent with greater strength.

Conclusions

The results show that less strength is obtainable

under reloading conditions than if loading is carried out
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in the conventional laboratory manner with loading in a

fixed position. The data indicated.ultimate strengths
,_.

reduced by 11 and 17 percent, with the greater reduction

applying to the smaller shear span. The straightforward

application of a shear compression theory for this case

would be inadvisable.

Height of Load Point

General

A beam with loads applied through connections from

cross beams does not develop the vertical compression in

the compression zone which tends to restrain the develop-

ment of inclined cracks, as in the ~ase of loads applied

d~rectly on top of the beam<.ll) C 1 h l'• onsequent y t e u t1mate

strength may be reduced.

Results of Tests

.
These Series D tests comprised a total of 12 pre~

stressed beams, six with rectangular sections and six with

I-sections. Details of the beams are shown in Fig. 7, and

the manner of loading is indicated in Table II. The six

beams with rectangular sections were divided into two
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groups such that Beams Dl, D2, and D3 were tested with a

30 in. shear span, and Beams D4, D5, and D6 with a 24 in:

shear span. The six I-beams were grouped so that Beams

D7, D8, and D9 had a shear span of 30 in., and Beams DlO,

Dll, and D12 an 18 in. shear span.

The principal results of the tests, compiled in

Table IX, consisted mainly of observed values of ultimate

load and are arranged in groups according to shear span.

The modes of failure shown in the table may be verifieq

by examination of the photographs in Figs. 28, 29, 30,

and 31. A comparison of ultimate loads was obtained for

the three loading positions with the load applied directly

on top, on full stubs, and on half stubs. To facilitate

the comparison, the following ratios were computed:

Top = Ultimate Strength with Top Loading
Full Stub Ultimate Strength with Load on Full Stubs

and
Top Ultimate Strength with Top Loading=Half Stub Ultimate Strength with Load on Half Stubs

Table IX shows that in every group of beams except

9ne the ultimate strength was less when load was applied

to the half stubs compared with load on the full stubs.

Likewise in all instances but one, the ult,imate strength
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was as great or greater with top loading than with full-

stub loading. The exception was Group I, where Beam Dl

carried an ultimate load of only 15.0 kips at each load

point as compared with Beams D2 and D3 which carried

loads of 19.3 and 17.4 kips, respectively. The results

of tests on Group I are rather ques~ionable, not only

because the ultimate strength of Beam Dl appears to be

low, but because some difficulty was experienced during

the testing of ~eam D3 and the ultimate load obtained

is somewhat uncertain. The ratios for Group I, however,

are consistent with the ratios found for th~ other groups,

since the ratio for top to full stub loading is smaller

than the ratio for top to half stub loading in all of

the beam groups shown in Table IX.

The load-deflection relationships are $hown for

each beam group in Figs. 17, 18, 19 and 20. It is

significant that the curves are approximately identical

for the three beams within each group.

Conclusions

The mann~r and position of load application tends

to influence the ultimate strenpth of beams without web

reinforcement. All of the failures, when loading was
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appl~ed to stubs, were of the diagonal tension type •

This fact wou14 seem to ren~er shear compression analysis

ineffective for such cases .
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SUMMARY

Tp.e obse-r:ved cract< patterqs for the 16 beamtest:s

of Serie~ C and the 12 be~m tests of Series D report~d

her~i~ were cl~ssi~ied intp two categories: flexura+ cracks

a~p tnclined cracks. ~ncl\med cracks were further

su,bdivided into flexure:-she~r and diagonal tensioI)

cracks. Flexural. cracks are caused by the ten~ile j!Jtr-esses

induced by bendiqg. moment. Inclined cracks are caused. " , .....

•

..
•

•

by the combined effect of' shear and bending.

In the rectan~u\ar te~tbeam~, both ~ypes of.~~-

cJ.ined flrackipg was observed, ~. e. diagonal tension and

flexure-shear. A diagonal tension crack may occur i:9 a

r-eg:!-on p~evi9usly uncracked,' or above a flexural Grack,

~nd is c~arac~erizedby r~lative+y r-a~~d deve~opment

without supstantial in~rease in load! Af~exure~shear

craskoccurs qS an extensipn of a flex~ral crack which,

in regions of qigh shear, bends and progresses in the

direction of increasing m9ment~ It is considered a~

incl~ned cra.c~ when a new branch is formed in the region

of the qerid which progres~es rapidly dQ~nwarq in ehe

~irection of decre~~ing moment.
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All of the I-beam tests reported herein exhibited

diagonal tension type cracking irrespective of the type

of loading employed.

Beam failures may be categorized as shear and flex-

ural failures. Shear failu~es may be of two types,

diagonal tension and shear compression. Both types in-

volve the formation of an inclined crack. Only three of

the beams tested in this investigation, Beams Cl, C2,

and Dl, were considered to have undergone a\ shear co~- ,

pression failure. With the exception of six beams that

failed in flexure or bond, the remaind~r were typed as

diagonal tension failures.

The shear compression theory propos~d in Progress

. (1,2)· d hReports 17 and 17A was reyiewe wit particular

attention given to the bond parameter, compatibility

condition, and limiting stress. The study indicated that

the most uncertain aspect of the theory centered about

the bond parameter, and the coefficients for structu~al

grade deformed bars, prestressing strand, and individually

bonded prestressing wires were revised. This revision

was accomplished by utilization of test results from

several investigations of pretensioned and conventionally
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reinforced members, and made possible a somewhat better

correlation between the theoretical and experimental

results for the tests co~sideredo In some insta~ces,

the revision also brought about a reduction in scatter,

as ~s apparent in Fig. 32.

The analysis based on the r~vised shear compres­

. (1,2)
s~on theory was applied to all beams of Series C

regardl~ss of the type of fail~re observed. The results

were generally acceptable for beams having a shear span

t9 total depth ratio of 2 or greater. From the ~est~ on

an 18 in. shear span it may be concluded that the appli~a-

tion of the shear compression theory is unsatisfaqtory

for short shea~ spans of less than 2 times the overall

depth of beam.

The result$ in tests in Series C to ascertain the

effect of length of overhang indicated that a 24 in.

overhang provides adequate embedment regardless of type

of reinforcement, degree of prestress, or shear span.

A 2-1/2 in. overhang proved to be adequate except for

beams which were tested using a shear span to total

depth ratio of 1.5. In two such tests strand slip

occurred resulting in a bond failure. It should be
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noted however, that slip did not occur until an extremely

high shear force had been imposed on the b~am •

In the tests in Series C to determine the effect

of existing inclined cracks, the test beams were loaded

until inclined cracks formed, after which the load was

removed and the load points were repositioned for sub-

sequent reloading to failure. The results indicated

that significant reductions in ultimate strength can be

effected by a reloading procedure of this type, compared

to loading to ultimate in a fix~d position. The principal

reason for the reduction in strength is apparently due to

the fact that the failure crack did not pass under the

load point, but instead passed outside so that the re-

straint due to the vertical compression was lost.

The results of tests on the D Series of beams were

to ascertain the affects of height of load point. These

tests indicated that the manner of load application does

influence the ultimate strength.

In general, beams loaded through stubs such that

the load was introduced at the mid-depth of the beam had

a lower ultimate strength than beams loaded through stubs
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such that the load could be introduc~d at the top of

the beam. Maximum ultimate strength was obtained with

loads applied directly on top of the peam.
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~tline Of Tests For Be~ms Of S~ri~s C
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Position Of :f.,pads &
Reinforcement

, Specific
Reactions Strands

Without Parti'al Deformed

(All~ Dimensions in Inches), Pre,. Pre- Bars Purpose
.

S1=ress stress
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1..
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Inclined
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C10
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Cracks

t t
,

16124 *>1
Cll118 I 24'

T

Note: P, is initial loading position up to the f;Lrst
inclined 9rack, followed by P2 , loading in the
second position to ulti~ate.
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Outline Of Tests For Beams Of Se~ies D
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Table III

Prestressing Data and Concrete Stren&ths

(All stresses are in psi)

Bea~ Concrete Steel Stresses
Strength
at Test Before Release After Release At Test

..

•

C1
C2
C3
C4'

C5
C6
C7
C8

C;:9
C10
C11
Cl2

Cl3
C14
C15
C16

D1
D2
D3

D4
D5
D6

rp
D8
D9

D10
D11
D12

5250
5240
5060
55L~0

5960
5780
5570
5340

5300
5430
5530
5380

5770
6460
6310
6250

5280
5220
5630.

5720
6030
5910

5660
5890
6090

5730
5820
5260

14,000
14,000
14,000
11+,000

64,800
64,800
64,800
64,800

63,10Q
63,100
63,100
63,100

o
o
o
o

65,000
65,000
65,000

63,200
63,200
63,200

64,900
64,900
64,900

64,700
64,700
64,700

13,300
13,000
13,500
13,000

60,900
60,900
60,900
60,600

59,300
59,000
59,000
58,500

o
o
o
o

60,400
60,400
60,100

58,300
58,200
58,600

58,300
56,800
58,100

57,200
57,400
57,200

6,400
5,300
5,300
5,900

52,600
55,000
50,000
54,400

49,100
49,300
48,400
46,200

-;3,300
-2,700
-3,000
-3,300

45,600
51,100
45,800

42,600
44,600
43,900

39,500
39,800
41,300

40,300
40,700
39,700

•
Ndt?% Reinforcement for all beams consisted of four 7/16-in.

npmina1 dia. 7-wire uncoated strands for pre~ensioning

except :eor.Beams C13, C14, G15, and C~6, which were rca:­
inforced with four No.6 standard deforme4 bars. Yie~d·

strength of deformed bars was 32,900 psi.
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Table I.V

"~
Beam Dimensions and Test Seans

• (All,values are in inches)
•

, 'I

• Beam Breadth Effective Total Overhang Shea;r Span Beam, ,

No. Depth Depth Span Length
b h D ...to a ..e L

C-l 6.18 8.62 12.12 24 30 90 138
C-2 6.12 8.68 12.18 .2.5 30 90 95
C-3 6.12 8.62 12.12 24 18 66 114
C-4 6.12 8.62 12.12 2.5 18 66 71

C-5 6.12 8.56 12.06 24 30 90 138
C-6 6.12 8.75 12.25 12 ' 30,36 90 114
C-7 6.12 8.75 ~2.25 6 36 90 ·+02
C-8 6.18 8.62 12.~2 2.5 30 90 95
C-9 6.12 8.62 12.12 24 27 66 114
C-10 6.12 8.62 12.12 12 24,30 66 90
C-ll 6.12 8.50 12.00 6 24 66 78'. C-12 6.12 8.68 12.18 2.5 18 66 71

• C-13 6.18 8.62 12.12 24 30 90 138•
C-14 6.00 8.62 12.1Z 2.5 30 90 95

.. C-15 6.06 8.68 12.18 24 18 66 114
C-16 6.12 8.62 12.12 2.5 18 66 71

D-1 6.18 8.56 12.06 24 30 90 138
D-2 6.18 8.75 12.25 24 30 90 138
D-3 6.37 8.68 12.18 24 30 90 138

D-4 6.12 8.56 12.06 18 24 78 114
D-5 6.12 8.56 12.06 18 24 78 114
D-6 6.18 8.62 12.12 18 24 78 114

D-7 6.18 8.62 12.12 24 30 90 138
D-8 6.18 &.62 12.12 24 30 90 138
D-9 6.18 8.62 12.12 24 30 90 138

D-10 6.18 8.62 12.12 24. 18 66 114
D-11 6.18 8.62 12.12 24 . 18 66 114
D-12 6.+8 8.62 12.12 24 18 66 114

1

• N'ote: Beams D7 through D12 are I-Beams. Beams D5, D8, and Dll
were constructed with full stubs at load points, Beams
D6, D9, and D12 with half~stubs~t load points.
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Table VI

Effect of Type of Reinforcing

Beam Overhang U1t.Load
in. Vu , kips

Mode of
Failure

Computed U1t.
Loads .in~ips
Vw BA

Load Ratios

Vu/Vw Vu/VBA

Type of Reinforcing·
(Not prestressed)

G~oup I - 30 in. shear span

C1 24 12.7 S (SC) 13.9 19.8 0.91 0.64 Strands
C13 24 14.2 S (DT) 14.7 15.1 0.97 0.94 Re-bars
.C2 -2-1/2 14.5 S-(SC~) 14.0 19.9 1.04· 0.73 Strands
C14 2-1/2 13.0 S (DT) 15.3 15.6 0.85 0.83 Re-bars

Gr.oup -11 - 18 in. shear span

C3
C15
C4
C16

24
24
2-1/2
2-1/2

30.0
25.8
23.0
26.0

F
F
B
F

15.9
21.9
17.5
21.7

32.1
26.2
33.5
26.8

1.89
1.18
1.31
1.20

0.93
0.99
0.69
0.97

Strands
Re-bars
Strands
Re-bars

Note: The symbol Vu denotes the ultimate load on each jack.
Yw and VBA denote the corres~oQdingcJmputedloads based
Q~ shear. compression theory(1,l) and on flexure theory (10)
respectively. Symbols S(SC), S(DT), and F denote shear·
compression, diagonal tension, and flexural failures

. ,
respectively. B denotes a bond failure. I

(j'\

N
I
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Table VII,

Effect of Prestress

Beam Overhang U1t. Load Mode of Computed U1t. Load Ratio Strand
in. Vu ' kips Failure Load in kips Tension

Vw VBA Vu/VW Vu!VBA

Group I - 30 in. shear span

C1 24 12.7 S (SC) 13.9 19.8 0.91 0.64 No Prestress
C5 24 15.5 S (DT) 17.5 22.7 0.89 0.68 Prestress
C2 2-1/2 14.5 S (SC) 14.0 19.9 1.04 0.73 No Prestress
C8 2-1/2 15.1 S (DT) 16.4 22.1 0.92 0.68 Prestress

Group II - 18 in. shear span

C3 24 30.0 F 15.9 32.1 1.89 0.93 No Prestress
C4· 2-1/2 23.0 B 17.5 33.5 1. 31 0.69 No Prestress
C12 2-1/2 29.3 B 20.1 36.8 1.46 O.~O Prestress

Group III - 27 in. shear span

C9 24 17.8 S (DT) 17.6 24.4 1.01 0.73 Prestress

I
(]\

W
I
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Table VIII

Effect of Beam Reloading

.. .,. ~:.

Beam First
Shear
Span,in.

Initial
Shear, Vic
Kips

Final
Shear
Span,in.

Ultimate
Load, Vu '
kips

Shear
Span
in.

Ultimate
Load,Vu
kips

Comparison Ratios

Group 1 - Reloaded Beams

C6

ClO

30

24

14.7 .

16.2

36

30

11.7

12.8

14.7 -0 94
15.5 - .

16.2 =0 74
22.0 .

11.7 -0 89
13.2 - .

12.8 =0.83
15.5

Group II - Comparison Beams

C5*

C7**

Cll***

30

36

24

15.5

13.2

22.0

*Results compared with Vic - value for Beam C6 and Vu - value for Beam C10.

**Results compared with Vu - value for Beam C6.
I

0'\
***Results compared with V· - value for Beam C10. .j>

~c I
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Table IX

-Effect of Height of Load Point

I-Sections

Group III - 30 in. shear span
Ol Top- . 8.5 10.-8 S{DT)
D8 Full Stub 7.8 9.6 S (DT) 1 .. 1'2
D9 Half Stub 8.0 9.0 S-(OT) 1.20

.-
Group IV - 18 in. shear span

010 . Top 12.5 -19.8 S (DT)
I

0\

011 Full Stub 8_.0 '16.5 S(DT) 1.20 Vi

D12 Half Stub 8.0 15.0 S{DT) 1.32
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Compressive Stress, f~, in psi

-Fig. 2 Rel,.at:Lonship ;Between R4ptur~ Modulus
and Compressive Strength
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Fig. 5 Nominal; Dimensions and ~etails of Cros~-Sections
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vertical "stirrups"
to form a stirrup
unit

r
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"

Support'

Section A-A

Note:

Sectional View of Beam

. ,

•

A similar group of U-shaped bars was used at each
load point in the Series C beams. See Fig. 7 for bar
details at load point for Series D beams •

Fig. 6 Typical Web Reinforcing at Supports



B Dl 04
I

.earn ,
-7

+-c

+-c
n n

II

n,
IIIII1
WLU

~eam D3,D6 I

4"

II Iityp.
II II
U U

I Beam D2, D5'

..,.....
'A

iI 11 2"
~II II typ.

II II
IJ U

:. .,

•

~ote: All st~rrup

reinforcement con­
sists'of No.5 bars.
Loading jacks are
indic~ted bY'arro~s

(t). U~Qer each jack
~s a steel plate and
a layer of neat
c~ment.

3"
-4H-t--- 4 c 1 .

o 0 typ.
o 0

Section A-A Section B-B

rBeam D7, D~O

-t-c

Beam D9,' D12 I

n fj

<>
I~ .11
II j'
II ,I
iJ J
+-c

Beam DB, Dll

+-
,i..!3
nn
II "

'"
II II < >-

II II
u u

"

~
" n:]11 II

'( "
II -:>

,I IIII. v U

-+-
A

i

<>

..
\

() ...
- -,

..

•

,

4~HD ~"
4 "-
~

Section A-A' SectiQn B-B Section c-c

•

Fig. 7 Web Reinfqrcement at Loa¢ Po~nts for Beams of Series D



,

•

•

Fig. 8 View Showing Strands Under Tension
and Forms in Place

-73



• ... ,.. .. . ~)

Wide Flange Section

a
1

5

---- 23
r----I.-~---.,;:::........".

4

il/4

L

1. "Homo~ote" fibrous hardboard, 4x6xl/4 in.
thick beneath steel distributor plate,
4x6xl/2 in.

4. Steel bars, 1/4xl/4x6 in. welded to
pedestal to provide horizontal
restraint

2. Steel distributor plate, 4x6xl/2 in. 5. Supporting frame for dial gages

3. Steel roller, 2 in. diam. 6. Dial gages

Note: Dimensions for a, Jl , 1'0, and L
are given in Table IV

7. Hemi-spherical bearing support, 6 in.
diam.

Fig. 9 Elevation View of Typical Test Setup
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Fig. 10 Photograph of Test Set-up
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a. Flex~~~ Cracks

~...

•

..

b. Flexure Cracks Plus a Diag9na~ T~nsiop Crack

I ! '

c. Flexure Cra~ks Pl~s a parCially Deve~opea

Flexure-Shear Crack

d. Flexure Crack~ Pl~s a F~lly D~ve+oped
,

Flexure~Shear Crack

Fig. 11 Pi~g~arns Showing Typic~l C~aqk fatterns,
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Load at 14 kips Shear

\

) .

Load at 15 kips Shear

Fig. 12 Photographs of Beam C8 During Testing
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Fig. 13 Load Deflection Curves for Beams Cl
C5, and C13 ,and Beams C2, C8, and C14

..,,-- IC

Beam C2
(Unprestressed)

Beam P Ultimate
No. (kips)

C2 14.5
C8 15.1
C14 13.0

.J;.--IC
Beam C14

(Reinforced)

__-lP -1_P_

(C14)

Beam
(Pre­

stressed)

Beam Cl
(Unprestressed)

Beam P Ultimate
No. (kips)

Cl 12.7
C5 15.5
C13 -14.2

·~~FC

---Fe (C13)

16

,-,. BeamrJ) 12
p.. (Pre-
.~

C stressed)

p..

'0
8cd

0
...J
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32r---------r-----..------.------.--------r--------r

Beam C4'
(Unprestressed)

Beam P Ultimate
No. (kips)

C3 30.0
CiS 25.8

C4 23.0
C12 29.3
C16 26.0

I

Beam C16
(Reinforced.

(C16)

Beam C3
(Unpre­

stressed)

(CiS)

Beam C12
(Prestressed)

8

4·

24

20

1

28..

•

FC: First Flexural Crack
IC: First Inclined Crack

• 0.2 0.4
o

0.6
0.2

0.8
0.4 0.6 0.8

Mid-span Deflection (inches)

Fig. 14 Load Deflection Curves for Beams C3 and C15, and
Beams C4, C12, and C16
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Fig. 15 Load Deflection Curves for Beams C6 and C10
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Fig. 16 Load Deflection Curves for Beams C6 and C7
and Beam Cl1
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Beam C5 with Prestressed Strands

Beam C1 with Un-prestressed Strands

Beam C13 with Reinforcing Bars

Fig. 21 Beams with 30 in. Shear Span and 24 in. Overhang

Fig. 22 Beam C9 with 27 in. Shear Span, 24 in. Overhang and
Prestressed Strands
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Beam C8 with Prestressed Strands

Beam C2 with Un-prestressed Strands

Beam C14 with Reinforcing Bars

Fig. 23 Beams with 30 in. Shear Span and 2~ in. Overhang

Fig. 24 Beam Cll with 24 in. Shear Span and 2~ in. Overhang
l
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Beam C12 with Prestressed Strands

Beam C4 with Un-prestressed Strands

Beam C16 with Reinforcing Bars

Fig. 25 Beams with 18 in. Shear Span and 2~ in. Overhang
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Beam C3 with Un-prestressed Strands

Beam C15 with Reinforcing Bars

Fig. 26 Beams with 18 in. Shear Span and 24 in. Overhang
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Beam C6 with Initial and Final Shear Spans
of 30 and 36 in., Respectively

Comparison Beam C7 having Shear Span of 36 in.

Beam C10 with Initial and Final Shear Spans
of 24 and 30 in., Respectively

Comparison Beam C11 having Shear Span of 24 in.
(Note: Comparison Beam C5 is Shown in Fig. 21)

Fig. 27 Reloaded Beams C6 and C10 with Comparison Beams
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Beam Dl Top Loading

Beam D2 Full Stub Loading

Beam D3 Half Stub Loading

Fig. 28 Rectangular Beams with 30 in. Shear Spans
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Beam D4 Top Loading

Beam D5 Full Stub Loading

Beam D6 Half Stub Loading

Fig. 29 Rectangular Beams with 24 in. Shear Spans
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Beam D7 Top Loading

Beam DB Full Stub Loading

Beam D9 Half Stub Loading

Fig. 30 I-Beams with 30 in. Shear Spans
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Beam D1D Top Loading

Beam Dll Full Stub Loading

Beam D12 Half Stub Loading

Fig. 31 I-Beams with 18 in. Shear Spans
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