100 research outputs found

    Bridging the Mid-Infrared-to-Telecom Gap with Silicon Nanophotonic Spectral Translation

    Get PDF
    Expanding far beyond traditional applications in optical interconnects at telecommunications wavelengths, the silicon nanophotonic integrated circuit platform has recently proven its merits for working with mid-infrared (mid-IR) optical signals in the 2-8 {\mu}m range. Mid-IR integrated optical systems are capable of addressing applications including industrial process and environmental monitoring, threat detection, medical diagnostics, and free-space communication. Rapid progress has led to the demonstration of various silicon components designed for the on-chip processing of mid-IR signals, including waveguides, vertical grating couplers, microcavities, and electrooptic modulators. Even so, a notable obstacle to the continued advancement of chip-scale systems is imposed by the narrow-bandgap semiconductors, such as InSb and HgCdTe, traditionally used to convert mid-IR photons to electrical currents. The cryogenic or multi-stage thermo-electric cooling required to suppress dark current noise, exponentially dependent upon the ratio Eg/kT, can limit the development of small, low-power, and low-cost integrated optical systems for the mid-IR. However, if the mid-IR optical signal could be spectrally translated to shorter wavelengths, for example within the near-infrared telecom band, photodetectors using wider bandgap semiconductors such as InGaAs or Ge could be used to eliminate prohibitive cooling requirements. Moreover, telecom band detectors typically perform with higher detectivity and faster response times when compared with their mid-IR counterparts. Here we address these challenges with a silicon-integrated approach to spectral translation, by employing efficient four-wave mixing (FWM) and large optical parametric gain in silicon nanophotonic wires

    Operative versus non-operative management of pediatric medial epicondyle fractures: a systematic review

    Get PDF
    There is ongoing debate about the management of medial epicondyle fractures in the pediatric population. This systematic review evaluated non-operative versus operative treatment of medial epicondyle fractures in pediatric and adolescent patients over the last six decades. A systematic review of the available literature was performed. Frequency-weighted mean union times were used to compare union rates for closed versus open treatments. Moreover, functional outcomes and range-of-motion variables were correlated with varying treatment modalities. Any complications, including ulnar nerve symptoms, pain, instability, infection, and residual deformity, were cataloged. Fourteen studies, encompassing 498 patients, met the inclusion/exclusion criteria. There were 261 males and 132 female patients; the frequency-weighted average age was 11.93 years. The follow-up range was 6–216 months. Under the cumulative random effects model, the odds of union with operative fixation was 9.33 times the odds of union with non-operative treatment (P < 0.0001). There was no significant difference between operative and non-operative treatments in terms of pain at final follow-up (P = 0.73) or ulnar nerve symptoms (P = 0.412). Operative treatment affords a significantly higher union rate over the non-operative management of medial epicondyle fractures. There was no difference in pain at final follow-up between operative and non-operative treatments. As surgical indications evolve, and the functional demands of pediatric patients increase, surgical fixation should be strongly considered to achieve stable fixation and bony union

    The Human Papillomavirus E6 Oncogene Represses a Cell Adhesion Pathway and Disrupts Focal Adhesion through Degradation of TAp63β upon Transformation

    Get PDF
    Cervical carcinomas result from cellular transformation by the human papillomavirus (HPV) E6 and E7 oncogenes which are constitutively expressed in cancer cells. The E6 oncogene degrades p53 thereby modulating a large set of p53 target genes as shown previously in the cervical carcinoma cell line HeLa. Here we show that the TAp63β isoform of the p63 transcription factor is also a target of E6. The p63 gene plays an essential role in skin homeostasis and is expressed as at least six isoforms. One of these isoforms, ΔNp63α, has been found overexpressed in squamous cell carcinomas and is shown here to be constitutively expressed in Caski cells associated with HPV16. We therefore explored the role of p63 in these cells by performing microarray analyses after repression of endogenous E6/E7 expression. Upon repression of the oncogenes, a large set of p53 target genes was found activated together with many p63 target genes related to cell adhesion. However, through siRNA silencing and ectopic expression of various p63 isoforms we demonstrated that TAp63β is involved in activation of this cell adhesion pathway instead of the constitutively expressed ΔNp63α and β. Furthermore, we showed in cotransfection experiments, combined with E6AP siRNA silencing, that E6 induces an accelerated degradation of TAp63β although not through the E6AP ubiquitin ligase used for degradation of p53. Repression of E6 transcription also induces stabilization of endogenous TAp63β in cervical carcinoma cells that lead to an increased concentration of focal adhesions at the cell surface. Consequently, TAp63β is the only p63 isoform suppressed by E6 in cervical carcinoma as demonstrated previously for p53. Down-modulation of focal adhesions through disruption of TAp63β therefore appears as a novel E6-dependent pathway in transformation. These findings identify a major physiological role for TAp63β in anchorage independent growth that might represent a new critical pathway in human carcinogenesis

    Genetic loci for retinal arteriolar microcirculation.

    Get PDF
    Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene) was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10(-8). This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10(-12) in combined meta-analysis of discovery and replication cohorts). In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Direct use of spent mushroom substrate from Pleurotus pulmonarius as a readily delignified feedstock for cellulase production

    Get PDF
    The feasibility of spent mushroom substrate (SMS) as an alternative fermentation feedstock for cellulase production has been demonstrated in this work. Utilization of SMS as a substrate has been attempted widely due to its high cellulose content and readily available in smaller particle size. On top of that, the availability of delignified SMS by the action of Pleurotus pulmonarius during mushroom cultivation offers another benefit to its use whereby no chemical pretreatment would be required prior to fermentation. The recovery of crude laccase and manganese peroxidase from delignified SMS were found to be 3 and 1.4 U/g, respectively. Further to this, the cellulase production from SMS by Trichoderma asperellum UPM 1 under solid state fermentation was optimized by applying central composite design, resulted in increment of 1.4-fold in CMCase (171.21 U/g) and 1.5-fold in β-glucosidase (6.83 U/g), with the optimum temperature of 27.5 °C, initial moisture content 81% and initial pH of fermentation 4.5. Therefore, this study showed that the direct utilization of SMS is feasible for promising cellulase production by T. asperellum UPM 1
    corecore