254 research outputs found

    Genetic, serological and biochemical characterization of Leishmania tropica from foci in northern Palestine and discovery of zymodeme MON-307

    Get PDF
    Background Many cases of cutaneous leishmaniasis (CL) have been recorded in the Jenin District based on their clinical appearance. Here, their parasites have been characterized in depth. Methods Leishmanial parasites isolated from 12 human cases of CL from the Jenin District were cultured as promastigotes, whose DNA was extracted. The ITS1 sequence and the 7SL RNA gene were analysed as was the kinetoplast minicircle DNA (kDNA) sequence. Excreted factor (EF) serotyping and multilocus enzyme electrophoresis (MLEE) were also applied. Results This extensive characterization identified the strains as Leishmania tropica of two very distinct sub-types that parallel the two sub-groups discerned by multilocus microsatellite typing (MLMT) done previously. A high degree of congruity was displayed among the results generated by the different analytical methods that had examined various cellular components and exposed intra-specific heterogeneity among the 12 strains. Three of the ten strains subjected to MLEE constituted a new zymodeme, zymodeme MON-307, and seven belonged to the known zymodeme MON-137. Ten of the 15 enzymes in the profile of zymodeme MON-307 displayed different electrophoretic mobilities compared with the enzyme profile of the zymodeme MON-137. The closest profile to that of zymodeme MON-307 was that of the zymodeme MON-76 known from Syria. Strains of the zymodeme MON-307 were EF sub-serotype A2 and those of the zymodeme MON-137 were either A9 or A9B4. The sub-serotype B4 component appears, so far, to be unique to some strains of L. tropica of zymodeme MON-137. Strains of the zymodeme MON-137 displayed a distinctive fragment of 417 bp that was absent in those of zymodeme MON-307 when their kDNA was digested with the endonuclease RsaI. kDNA-RFLP after digestion with the endonuclease MboI facilitated a further level of differentiation that partially coincided with the geographical distribution of the human cases from which the strains came. Conclusions The Palestinian strains that were assigned to different genetic groups differed in their MLEE profiles and their EF types. A new zymodeme, zymodeme MON-307 was discovered that seems to be unique to the northern part of the Palestinian West Bank. What seemed to be a straight forward classical situation of L. tropica causing anthroponotic CL in the Jenin District might be a more complex situation, owing to the presence of two separate sub-types of L. tropica that, possibly, indicates two separate transmission cycles involving two separate types of phlebotomine sand fly vector

    A Novel Tropically Stable Oral Amphotericin B Formulation (iCo-010) Exhibits Efficacy against Visceral Leishmaniasis in a Murine Model

    Get PDF
    Visceral leishmaniasis (VL) is a systemic form of a vector-borne parasitic disease caused by obligate intra-macrophage protozoa of the genus Leishmania. VL is always fatal in humans if left untreated and treatment options are limited. Amphotericin B (AmB), a polyene antibiotic, is the most active antileishmanial agent that currently exists. Liposomal AmB (AmBisome) is used as first-line treatment in developed countries [1], [7], [8], [9], [10]; however, the requisite parenteral administration and the high cost of the liposomal formulation prevents this treatment from reaching the majority of patients in developing nations [3]. A stable, efficacious oral treatment for VL that is able to withstand the rigors of tropical climates would overcome many of the current barriers to treatment that exist in countries with large VL-infected patient populations. In this study we have developed an oral formulation of AmB that is stable in tropical conditions and exhibits significant antileshimanial activity in mice

    Nanoscale potassium niobate crystal structure and phase transition

    Get PDF
    Nanoscale potassium niobate (KNbO3) powders of orthorhombic structure were synthesized using the sol-gel method. The heat-treatment temperature of the gels had a pronounced effect on KNbO3 particle size and morphology. Field emission scanning electron microscopy and transmission electron microscopy were used to determine particle size and morphology. The average KNbO3 grain size was estimated to be less than 100 nm, and transmission electron microscopy images indicated that KNbO3 particles had a brick-like morphology. Synchrotron X-ray diffraction was used to identify the room-temperature structures using Rietveld refinement. The ferroelectric orthorhombic phase was retained even for particles smaller than 50 nm. The orthorhombic to tetragonal and tetragonal to cubic phase transitions of nanocrystalline KNbO3 were investigated using temperature-dependent powder X-ray diffraction. Differential scanning calorimetry was used to examine the temperature dependence of KNbO3 phase transition. The Curie temperature and phase transition were independent of particle size, and Rietveld analyses showed increasing distortions with decreasing particle size

    Analysing future change in the EU's energy innovation system

    Get PDF
    We develop a novel approach for quantitatively analysing future storylines of change by combining econometric analysis and Monte Carlo simulation for four different storylines of change in the EU's energy innovation system. We explore impacts on three key innovation outcomes: patenting (innovation), co-invention (collaboration), and technology cost reduction (diffusion). We find that diverse mixes of policy instruments stimulate collaborative innovation activity. We find that both RD&D expenditure and trade imports support knowledge generation and exchange, and that these relationships are largely robust to future uncertainty. Conversely, we find that policy durability and stability are only weakly linked to innovation outcomes, suggesting that adaptive policy responding to rapidly changing innovation environments should play an important part of the EU's energy future

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    In vivo and in vitro evaluation of combretastatin A-4 and its sodium phosphate prodrug

    Get PDF
    The anti-tumour effects and mechanism of action of combretastatin A-4 and its prodrug, combretastatin A-4 disodium phosphate, were examined in subcutaneous and orthotopically transplanted experimental colon tumour models. Additionally, the ability of these compounds to directly interfere with endothelial cell behaviour was also examined in HUVEC cultures. Combretastatin A-4 (150 mg kg–1, intraperitoneally (i.p.)) and its water-soluble prodrug (100 mg kg–1, i.p.) caused almost complete vascular shutdown (at 4 h), extensive haemorrhagic necrosis which started at 1 h after treatment and significant tumour growth delay in MAC 15A subcutaneous (s.c.) colon tumours. Similar vascular effects were obtained in MAC 15 orthotopic tumours and SW620 human colon tumour xenografts treated with the prodrug. More importantly, in the orthotopic models, necrosis was seen in vascularized metastatic deposits but not in avascular secondary deposits. The possible mechanism giving rise to these effects was examined in HUVEC cells. Here cellular networks formed in type I calf-skin collagen layers and these networks were completely disrupted when incubated with a non-cytotoxic concentration of combretastatin A-4 or its prodrug. This effect started at 4 h and was complete by 24 h. The same non-cytotoxic concentrations resulted in disorganization of F-actin and β-tubulin at 1 h after treatment. In conclusion, combretastatin A-4 and its prodrug caused extensive necrosis in MAC 15A s.c. and orthotopic colon cancer and metastases, resulting in anti-tumour effects. Necrosis was not seen in avascular tumour nodules, suggesting a vascular mechanism of action. © 1999 Cancer Research Campaig

    AAV-mediated human PEDF inhibits tumor growth and metastasis in murine colorectal peritoneal carcinomatosis model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis plays an important role in tumor growth and metastasis, therefore antiangiogenic therapy was widely investigated as a promising approach for cancer therapy. Recently, pigment epithelium-derived factor (PEDF) has been shown to be the most potent inhibitor of angiogenesis. Adeno-associated virus (AAV) vectors have been intensively studied due to their wide tropisms, nonpathogenicity, and long-term transgene expression <it>in vivo</it>. The objective of this work was to evaluate the ability of AAV-mediated human PEDF (hPEDF) as a potent tumor suppressor and a potential candidate for cancer gene therapy.</p> <p>Methods</p> <p>Recombinant AAV<sub>2 </sub>encoding hPEDF (rAAV<sub>2</sub>-hPEDF) was constructed and produced, and then was assigned for <it>in vitro </it>and <it>in vivo </it>experiments. Conditioned medium from cells infected with rAAV<sub>2</sub>-hPEDF was used for cell proliferation and tube formation tests of human umbilical vein endothelial cells (HUVECs). Subsequently, colorectal peritoneal carcinomatosis (CRPC) mouse model was established and treated with rAAV<sub>2</sub>-hPEDF. Therapeutic efficacy of rAAV<sub>2</sub>-hPEDF were investigated, including tumor growth and metastasis, survival time, microvessel density (MVD) and apoptosis index of tumor tissues, and hPEDF levels in serum and ascites.</p> <p>Results</p> <p>rAAV<sub>2</sub>-hPEDF was successfully constructed, and transmission electron microscope (TEM) showed that rAAV<sub>2</sub>-hPEDF particles were non-enveloped icosahedral shape with a diameter of approximately 20 nm. rAAV<sub>2</sub>-hPEDF-infected cells expressed hPEDF protein, and the conditioned medium from infected cells inhibited proliferation and tube-formation of HUVECs <it>in vitro</it>. Furthermore, in CRPC mouse model, rAAV<sub>2</sub>-hPEDF significantly suppressed tumor growth and metastasis, and prolonged survival time of treated mice. Immunofluorescence studies indicated that rAAV<sub>2</sub>-hPEDF could inhibit angiogenesis and induce apoptosis in tumor tissues. Besides, hPEDF levels in serum and ascites of rAAV<sub>2</sub>-hPEDF-treated mice were significant higher than those in rAAV<sub>2</sub>-null or normal saline (NS) groups.</p> <p>Conclusions</p> <p>Thus, our results suggest that rAAV<sub>2</sub>-hPEDF may be a potential candidate as an antiangiogenic therapy agent.</p

    A randomized two arm phase III study in patients post radical resection of liver metastases of colorectal cancer to investigate bevacizumab in combination with capecitabine plus oxaliplatin (CAPOX) vs CAPOX alone as adjuvant treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>About 50% of patients with colorectal cancer are destined to develop hepatic metastases. Radical resection is the most effective treatment for patients with colorectal liver metastases offering five year survival rates between 36-60%. Unfortunately only 20% of patients are resectable at time of presentation. Radiofrequency ablation is an alternative treatment option for irresectable colorectal liver metastases with reported 5 year survival rates of 18-30%. Most patients will develop local or distant recurrences after surgery, possibly due to the outgrowth of micrometastases present at the time of liver surgery. This study aims to achieve an improved disease free survival for patients after resection or resection combined with RFA of colorectal liver metastases by adding the angiogenesis inhibitor bevacizumab to an adjuvant regimen of CAPOX.</p> <p>Methods/design</p> <p>The Hepatica study is a two-arm, multicenter, randomized, comparative efficacy and safety study. Patients are assessed no more than 8 weeks before surgery with CEA measurement and CT scanning of the chest and abdomen. Patients will be randomized after resection or resection combined with RFA to receive CAPOX and Bevacizumab or CAPOX alone. Adjuvant treatment will be initiated between 4 and 8 weeks after metastasectomy or resection in combination with RFA. In both arms patients will be assessed for recurrence/new occurrence of colorectal cancer by chest CT, abdominal CT and CEA measurement. Patients will be assessed after surgery but before randomization, thereafter every three months after surgery in the first two years and every 6 months until 5 years after surgery. In case of a confirmed recurrence/appearance of new colorectal cancer, patients can be treated with surgery or any subsequent line of chemotherapy and will be followed for survival until the end of study follow up period as well. The primary endpoint is disease free survival. Secondary endpoints are overall survival, safety and quality of life.</p> <p>Conclusion</p> <p>The HEPATICA study is designed to demonstrate a disease free survival benefit by adding bevacizumab to an adjuvant regime of CAPOX in patients with colorectal liver metastases undergoing a radical resection or resection in combination with RFA.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier NCT00394992</p

    Specific Recognition of p53 Tetramers by Peptides Derived from p53 Interacting Proteins

    Get PDF
    Oligomerization plays a major role in regulating the activity of many proteins, and in modulating their interactions. p53 is a homotetrameric transcription factor that has a pivotal role in tumor suppression. Its tetramerization domain is contained within its C-terminal domain, which is a site for numerous protein-protein interactions. Those can either depend on or regulate p53 oligomerization. Here we screened an array of peptides derived from proteins known to bind the tetrameric p53 C-terminal domain (p53CTD) and identified ten binding peptides. We quantitatively characterized their binding to p53CTD using fluorescence anisotropy. The peptides bound tetrameric p53CTD with micromolar affinities. Despite the high charge of the binding peptides, electrostatics contributed only mildly to the interactions. NMR studies indicated that the peptides bound p53CTD at defined sites. The most significant chemical shift deviations were observed for the peptides WS100B(81–92), which bound directly to the p53 tetramerization domain, and PKCα(281–295), which stabilized p53CTD in circular dichroism thermal denaturation studies. Using analytical ultracentrifugation, we found that several of the peptides bound preferentially to p53 tetramers. Our results indicate that the protein-protein interactions of p53 are dependent on the oligomerization state of p53. We conclude that peptides may be used to regulate the oligomerization of p53
    corecore