72 research outputs found

    On improvement in ejection fraction with iron chelation in thalassemia major and the risk of future heart failure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Trials of iron chelator regimens have increased the treatment options for cardiac siderosis in beta-thalassemia major (TM) patients. Treatment effects with improved left ventricular (LV) ejection fraction (EF) have been observed in patients without overt heart failure, but it is unclear whether these changes are clinically meaningful.</p> <p>Methods</p> <p>This retrospective study of a UK database of TM patients modelled the change in EF between serial scans measured by cardiovascular magnetic resonance (CMR) to the relative risk (RR) of future development of heart failure over 1 year. Patients were divided into 2 strata by baseline LVEF of 56-62% (below normal for TM) and 63-70% (lower half of the normal range for TM).</p> <p>Results</p> <p>A total of 315 patients with 754 CMR scans were analyzed. A 1% absolute increase in EF from baseline was associated with a statistically significant reduction in the risk of future development of heart failure for both the lower EF stratum (EF 56-62%, RR 0.818, p < 0.001) and the higher EF stratum (EF 63-70%, RR 0.893 p = 0.001).</p> <p>Conclusion</p> <p>These data show that during treatment with iron chelators for cardiac siderosis, small increases in LVEF in TM patients are associated with a significantly reduced risk of the development of heart failure. Thus the iron chelator induced improvements in LVEF of 2.6% to 3.1% that have been observed in randomized controlled trials, are associated with risk reductions of 25.5% to 46.4% for the development of heart failure over 12 months, which is clinically meaningful. In cardiac iron overload, heart mitochondrial dysfunction and its relief by iron chelation may underlie the changes in LV function.</p

    MiRNA Control of Vegetative Phase Change in Trees

    Get PDF
    After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perennial woody plants it occurs after months or years and can involve major changes in shoot architecture. Whether this transition is controlled by the same mechanism in annual and perennial plants is unknown. In the annual forb Arabidopsis thaliana and in maize (Zea mays), vegetative phase change is controlled by the sequential activity of microRNAs miR156 and miR172. miR156 is highly abundant in seedlings and decreases during the juvenile-to-adult transition, while miR172 has an opposite expression pattern. We observed similar changes in the expression of these genes in woody species with highly differentiated, well-characterized juvenile and adult phases (Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima), as well as in the tree Populus x canadensis, where vegetative phase change is marked by relatively minor changes in leaf morphology and internode length. Overexpression of miR156 in transgenic P. x canadensis reduced the expression of miR156-targeted SPL genes and miR172, and it drastically prolonged the juvenile phase. Our results indicate that miR156 is an evolutionarily conserved regulator of vegetative phase change in both annual herbaceous plants and perennial trees

    Insights into the Complex Associations Between MHC Class II DRB Polymorphism and Multiple Gastrointestinal Parasite Infestations in the Striped Mouse

    Get PDF
    Differences in host susceptibility to different parasite types are largely based on the degree of matching between immune genes and parasite antigens. Specifically the variable genes of the major histocompatibility complex (MHC) play a major role in the defence of parasites. However, underlying genetic mechanisms in wild populations are still not well understood because there is a lack of studies which deal with multiple parasite infections and their competition within. To gain insights into these complex associations, we implemented the full record of gastrointestinal nematodes from 439 genotyped individuals of the striped mouse, Rhabdomys pumilio. We used two different multivariate approaches to test for associations between MHC class II DRB genotype and multiple nematodes with regard to the main pathogen-driven selection hypotheses maintaining MHC diversity and parasite species-specific co-evolutionary effects. The former includes investigations of a ‘heterozygote advantage’, or its specific form a ‘divergent-allele advantage’ caused by highly dissimilar alleles as well as possible effects of specific MHC-alleles selected by a ‘rare allele advantage’ ( = negative ‘frequency-dependent selection’). A combination of generalized linear mixed models (GLMMs) and co-inertia (COIA) analyses made it possible to consider multiple parasite species despite the risk of type I errors on the population and on the individual level. We could not find any evidence for a ‘heterozygote’ advantage but support for ‘divergent-allele’ advantage and infection intensity. In addition, both approaches demonstrated high concordance of positive as well as negative associations between specific MHC alleles and certain parasite species. Furthermore, certain MHC alleles were associated with more than one parasite species, suggesting a many-to-many gene-parasite co-evolution. The most frequent allele Rhpu-DRB*38 revealed a pleiotropic effect, involving three nematode species. Our study demonstrates the co-existence of specialist and generalist MHC alleles in terms of parasite detection which may be an important feature in the maintenance of MHC polymorphism

    Transcriptome Analysis Describing New Immunity and Defense Genes in Peripheral Blood Mononuclear Cells of Rheumatoid Arthritis Patients

    Get PDF
    Background: Large-scale gene expression profiling of peripheral blood mononuclear cells from Rheumatoid Arthritis (RA) patients could provide a molecular description that reflects the contribution of diverse cellular responses associated with this disease. The aim of our study was to identify peripheral blood gene expression profiles for RA patients, using Illumina technology, to gain insights into RA molecular mechanisms. Methodology/Principal Findings: The Illumina Human-6v2 Expression BeadChips were used for a complete genome-wide transcript profiling of peripheral blood mononuclear cells (PBMCs) from 18 RA patients and 15 controls. Differential analysis per gene was performed with one-way analysis of variance (ANOVA) and P values were adjusted to control the False Discovery Rate (FDR < 5%). Genes differentially expressed at significant level between patients and controls were analyzed using Gene Ontology (GO) in the PANTHER database to identify biological processes. A differentially expression of 339 Reference Sequence genes (238 down-regulated and 101 up-regulated) between the two groups was observed. We identified a remarkably elevated expression of a spectrum of genes involved in Immunity and Defense in PBMCs of RA patients compared to controls. This result is confirmed by GO analysis, suggesting that these genes could be activated systemically in RA. No significant down-regulated ontology groups were found. Microarray data were validated by real time PCR in a set of nine genes showing a high degree of correlation. Conclusions/Significance: Our study highlighted several new genes that could contribute in the identification of innovative clinical biomarkers for diagnostic procedures and therapeutic interventions

    The impact of co-infections on fish: a review

    Full text link
    International audienceAbstractCo-infections are very common in nature and occur when hosts are infected by two or more different pathogens either by simultaneous or secondary infections so that two or more infectious agents are active together in the same host. Co-infections have a fundamental effect and can alter the course and the severity of different fish diseases. However, co-infection effect has still received limited scrutiny in aquatic animals like fish and available data on this subject is still scarce. The susceptibility of fish to different pathogens could be changed during mixed infections causing the appearance of sudden fish outbreaks. In this review, we focus on the synergistic and antagonistic interactions occurring during co-infections by homologous or heterologous pathogens. We present a concise summary about the present knowledge regarding co-infections in fish. More research is needed to better understand the immune response of fish during mixed infections as these could have an important impact on the development of new strategies for disease control programs and vaccination in fish

    Nucleo-cytoplasmic transport of proteins and RNA in plants

    Get PDF
    Merkle T. Nucleo-cytoplasmic transport of proteins and RNA in plants. Plant Cell Reports. 2011;30(2):153-176.Transport of macromolecules between the nucleus and the cytoplasm is an essential necessity in eukaryotic cells, since the nuclear envelope separates transcription from translation. In the past few years, an increasing number of components of the plant nuclear transport machinery have been characterised. This progress, although far from being completed, confirmed that the general characteristics of nuclear transport are conserved between plants and other organisms. However, plant-specific components were also identified. Interestingly, several mutants in genes encoding components of the plant nuclear transport machinery were investigated, revealing differential sensitivity of plant-specific pathways to impaired nuclear transport. These findings attracted attention towards plant-specific cargoes that are transported over the nuclear envelope, unravelling connections between nuclear transport and components of signalling and developmental pathways. The current state of research in plants is summarised in comparison to yeast and vertebrate systems, and special emphasis is given to plant nuclear transport mutants

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
    corecore