75 research outputs found

    Simultaneous quantification of active carbon- and nitrogen-fixing communities and estimation of fixation rates using fluorescence in situ hybridization and flow cytometry

    Full text link
    © 2014, American Society for Microbiology. Understanding the interconnectivity of oceanic carbon and nitrogen cycles, specifically carbon and nitrogen fixation, is essential in elucidating the fate and distribution of carbon in the ocean. Traditional techniques measure either organism abundance or biochemical rates. As such, measurements are performed on separate samples and on different time scales. Here, we developed a method to simultaneously quantify organisms while estimating rates of fixation across time and space for both carbon and nitrogen. Tyramide signal amplification fluorescence in situ hybridization (TSA-FISH) of mRNA for functionally specific oligonucleotide probes for rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase; carbon fixation) and nifH (nitrogenase; nitrogen fixation) was combined with flow cytometry to measure abundance and estimate activity. Cultured samples representing a diversity of phytoplankton (cyanobacteria, coccolithophores, chlorophytes, diatoms, and dinoflagellates), as well as environmental samples from the open ocean (Gulf of Mexico, USA, and southeastern Indian Ocean, Australia) and an estuary (Galveston Bay, Texas, USA), were successfully hybridized. Strong correlations between positively tagged community abundance and 14C/15N measurements are presented. We propose that these methods can be used to estimate carbon and nitrogen fixation in environmental communities. The utilization of mRNA TSA-FISH to detect multiple active microbial functions within the same sample will offer increased understanding of important biogeochemical cycles in the ocean

    Metabolic pathways inferred from a bacterial marker gene illuminate ecological changes across South Pacific frontal boundaries

    Full text link
    Global oceanographic monitoring initiatives originally measured abiotic essential ocean variables but are currently incorporating biological and metagenomic sampling programs. There is, however, a large knowledge gap on how to infer bacterial functions, the information sought by biogeochemists, ecologists, and modelers, from the bacterial taxonomic information (produced by bacterial marker gene surveys). Here, we provide a correlative understanding of how a bacterial marker gene (16S rRNA) can be used to infer latitudinal trends for metabolic pathways in global monitoring campaigns. From a transect spanning 7000 km in the South Pacific Ocean we infer ten metabolic pathways from 16S rRNA gene sequences and 11 corresponding metagenome samples, which relate to metabolic processes of primary productivity, temperature-regulated thermodynamic effects, coping strategies for nutrient limitation, energy metabolism, and organic matter degradation. This study demonstrates that low-cost, high-throughput bacterial marker gene data, can be used to infer shifts in the metabolic strategies at the community scale

    Mainstreaming microbes across biomes

    Get PDF
    Bacteria, fungi, and other microorganisms in the environment (i.e., environmental microbiomes) provide vital ecosystem services and affecthuman health. Despite their importance, public awareness of environmental microbiomes has lagged behind that of human microbiomes. A keyproblem has been a scarcity of research demonstrating the microbial connections across environmental biomes (e.g., marine, soil) and betweenenvironmental and human microbiomes. We show in the present article, through analyses of almost 10,000 microbiome papers and threeglobal data sets, that there are significant taxonomic similarities in microbial communities across biomes, but very little cross-biome researchexists. This disconnect may be hindering advances in microbiome knowledge and translation. In this article, we highlight current and potentialapplications of environmental microbiome research and the benefits of an interdisciplinary, cross-biome approach. Microbiome scientists needto engage with each other, government, industry, and the public to ensure that research and applications proceed ethically, maximizing thepotential benefits to society

    Bacterial Niche-Specific Genome Expansion Is Coupled with Highly Frequent Gene Disruptions in Deep-Sea Sediments

    Get PDF
    The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers) of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed

    A brief early intervention for adolescent depression that targets emotional mental images and memories: protocol for a feasibility randomised controlled trial (IMAGINE trial)

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.Background: Adolescent depression is common and impairing. There is an urgent need to develop early interventions to prevent depression becoming entrenched. However, current psychological interventions are difficult to access and show limited evidence of effectiveness. Schools offer a promising setting to enhance access to interventions, including reducing common barriers such as time away from education. Distressing negative mental images and a deficit in positive future images, alongside overgeneral autobiographical memories, have been implicated in depression across the lifespan, and interventions targeting them in adults have shown promise. Here, we combine techniques targeting these cognitive processes into a novel, brief psychological intervention for adolescent depression. This feasibility randomised controlled trial will test the feasibility and acceptability of delivering this imagery-based cognitive behavioural intervention in schools. Methods/design: Fifty-six adolescents (aged 16-18) with high symptoms of depression will be recruited from schools. Participants will be randomly allocated to the imagery-based cognitive behavioural intervention (ICBI) or the control intervention, non-directive supportive therapy (NDST). Data on feasibility and acceptability will be recorded throughout, including data on recruitment, retention and adherence rates as well as adverse events. In addition, symptom assessment will take place pre-intervention, post-intervention and at 3-month follow-up. Primarily, the trial aims to establish whether it is feasible and acceptable to carry out this project in a school setting. Secondary objectives include collecting data on clinical measures, including depression and anxiety, and measures of the mechanisms proposed to be targeted by the intervention. The acceptability of using technology in assessment and treatment will also be evaluated. Discussion: Feasibility, acceptability and symptom data for this brief intervention will inform whether an efficacy randomised controlled trial is warranted and aid planning of this trial. If this intervention is shown in a subsequent definitive trial to be safe, clinically effective and cost-effective, it has potential to be rolled out as an intervention and so would significantly extend the range of therapies available for adolescent depression. This psychological intervention draws on cognitive mechanism research suggesting a powerful relationship between emotion and memory and uses imagery as a cognitive target in an attempt to improve interventions for adolescent depression. Trial registration: ISRCTN85369879.This study represents independent research from a Clinical Doctoral Research Fellowship (Dr Victoria Pile, ICA-CDRF-2015-01-007) supported by the National Institute for Health Research and Health Education England

    Exploring the Role of Explicit and Implicit Self-Esteem and Self-Compassion in Anxious and Depressive Symptomatology Following Acquired Brain Injury

    Full text link
    [EN] Objectives Acquired brain injury (ABI) can lead to the emergence of several disabilities and is commonly associated with high rates of anxiety and depression symptoms. Self-related constructs, such as self-esteem and self-compassion, might play a key role in this distressing symptomatology. Low explicit (i.e., deliberate) self-esteem is associated with anxiety and depression after ABI. However, implicit (i.e., automatic) self-esteem, explicit-implicit self-discrepancies, and self-compassion could also significantly contribute to this symptomatology. The purpose of the present study was to examine whether implicit self-esteem, explicit-implicit self-discrepancy (size and direction), and self-compassion are related to anxious and depressive symptoms after ABI in adults, beyond the contribution of explicit self-esteem. Methods The sample consisted 38 individuals with ABI who were enrolled in a long-term rehabilitation program. All participants completed the measures of explicit self-esteem, implicit self-esteem, self-compassion, anxiety, and depression. Pearson's correlations and hierarchical regression models were calculated. Results Findings showed that both self-compassion and implicit self-esteem negatively accounted for unique variance in anxiety and depression when controlling for explicit self-esteem. Neither the size nor direction of explicit-implicit self-discrepancy was significantly associated with anxious or depressive symptomatology. Conclusions The findings suggest that the consideration of self-compassion and implicit self-esteem, in addition to explicit self-esteem, contributes to understanding anxiety and depression following ABI.Lorena Desdentado is supported by a FPU doctoral scholarship (FPU18/01690) from the Spanish Ministry of Universities. This work was supported by CIBEROBN, an initiative of the ISCIII (ISC III CB06 03/0052).Desdentado, L.; Cebolla, A.; Miragall, M.; Llorens Rodríguez, R.; Navarro, MD.; Baños, RM. (2021). Exploring the Role of Explicit and Implicit Self-Esteem and Self-Compassion in Anxious and Depressive Symptomatology Following Acquired Brain Injury. Mindfulness. 12(4):899-910. https://doi.org/10.1007/s12671-020-01553-wS899910124Anson, K., & Ponsford, J. (2006). Coping and emotional adjustment following traumatic brain injury. The Journal of Head Trauma Rehabilitation, 21(3), 248–259. https://doi.org/10.1097/00001199-200605000-00005.Baños, R. M., & Guillén, V. (2000). Psychometric characteristics in normal and social phobic samples for a Spanish version of the Rosenberg Self-Esteem Scale. Psychological Reports, 87(1), 269–274. https://doi.org/10.2466/pr0.2000.87.1.269.Beadle, E. J., Ownsworth, T., Fleming, J., & Shum, D. (2016). The impact of traumatic brain injury on self-identity: a systematic review of the evidence for self-concept changes. The Journal of Head Trauma Rehabilitation, 31(2), E12–E25. https://doi.org/10.1097/HTR.0000000000000158.Beck, A. T. (1979). Cognitive therapy of depression. New York: Guilford Press.Beevers, C. G. (2005). Cognitive vulnerability to depression: A dual process model. Clinical Psychology Review, 25(7), 975–1002. https://doi.org/10.1016/j.cpr.2005.03.003.Bos, A. E. R., Huijding, J., Muris, P., Vogel, L. R. R., & Biesheuvel, J. (2010). Global, contingent and implicit self-esteem and psychopathological symptoms in adolescents. Personality and Individual Differences, 48(3), 311–316. https://doi.org/10.1016/j.paid.2009.10.025.Bowerman, B. L., & O’Connell, R. T. (1990). Linear statistical models: An applied approach (2nd ed.). Belmont, CA: Duxbury.Brenner, R. E., Heath, P. J., Vogel, D. L., & Credé, M. (2017). Two is more valid than one: examining the factor structure of the self-compassion scale (SCS). Journal of Counseling Psychology, 64(6), 696–707. https://doi.org/10.1037/cou0000211.Brysbaert, M. (2019). How many participants do we have to include in properly powered experiments? A tutorial of power analysis with reference tables. Journal of Cognition, 2(1), 1–38. https://doi.org/10.5334/joc.72.Carroll, E., & Coetzer, R. (2011). Identity, grief and self-awareness after traumatic brain injury. Neuropsychological Rehabilitation, 21(3), 289–305. https://doi.org/10.1080/09602011.2011.555972.Corrigan, P. W., & Watson, A. C. (2002). The paradox of self-stigma and mental illness. Clinical Psychology: Science and Practice, 9(1), 35–53. https://doi.org/10.1093/clipsy/9.1.35.Creemers, D. H. M., Scholte, R. H. J., Engels, R. C. M. E., Prinstein, M. J., & Wiers, R. W. (2012). Implicit and explicit self-esteem as concurrent predictors of suicidal ideation, depressive symptoms, and loneliness. Journal of Behavior Therapy and Experimental Psychiatry, 43(1), 638–646. https://doi.org/10.1016/j.jbtep.2011.09.006.Creemers, D. H. M., Scholt, R. H. J., Engels, R. C. M. E., Prinstein, M. J., & Wiers, R. W. (2013). Damaged self-esteem is associated with internalizing problems. Frontiers in Psychology, 4, 152. https://doi.org/10.3389/fpsyg.2013.00152.Curvis, W., Simpson, J., & Hampson, N. (2018). Factors associated with self-esteem following acquired brain injury in adults: a systematic review. Neuropsychological Rehabilitation, 28(1), 142–183. https://doi.org/10.1080/09602011.2016.1144515.Elbaum, J., & Benson, D. (Eds.). (2007). Acquired brain injury: an integrative neuro-rehabilitation approach. New York: Springer. https://doi.org/10.1007/978-0-387-37575-5.Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149.FEDACE. (2015). Las personas con daño cerebral adquirido en España. Ministerio de Sanidad, Servicios Sociales e Igualdad. Retrieved May 21, 2020, from: https://fedace.org/index.php?V_dir=MSC&V_mod=download&f=2016-9/26-16-4-11.admin.Informe_FEDACE_RPD_para_DDC-1.pdf.Feigin, V. L., Forouzanfar, M. H., Krishnamurthi, R., Mensah, G. A., Connor, M., Bennett, D. A., Moran, A. E., Sacco, R. L., Anderson, L., Truelsen, T., O’Donnell, M., Venketasubramanian, N., Barker-Collo, S., Lawes, C. M. M., Wang, W., Shinohara, Y., Witt, E., Ezzati, M., & Naghavi, M. (2014). Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. The Lancet, 383(9913), 245–254. https://doi.org/10.1016/S0140-6736(13)61953-4.Fennell, M. J. V. (1997). Low self-esteem: a cognitive perspective. Behavioural and Cognitive Psychotherapy, 25(1), 1–26. https://doi.org/10.1017/s1352465800015368.Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. https://doi.org/10.1016/0022-3956(75)90026-6.Garcia-Campayo, J., Navarro-Gil, M., Andrés, E., Montero-Marin, J., López-Artal, L., Marcos, M., & Demarzo, P. (2014). Validation of the Spanish versions of the long (26 items) and short (12 items) forms of the Self-Compassion Scale (SCS). Health and Quality of Life Outcomes, 12(4). https://doi.org/10.1186/1477-7525-12-4.GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. (2018). Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(1), 56–87. https://doi.org/10.1016/S1474-4422(18)30415-0.Gould, K. R., Ponsford, J. L., Johnston, L., & Schönberger, M. (2011). Relationship between psychiatric disorders and 1-year psychosocial outcome following traumatic brain injury. The Journal of Head Trauma Rehabilitation, 26(1), 79–89. https://doi.org/10.1097/HTR.0b013e3182036799.Gracey, F., Palmer, S., Rous, B., Psaila, K., Shaw, K., O’Dell, J., Cope, J., & Mohamed, S. (2008). “Feeling part of things”: personal construction of self after brain injury. Neuropsychological Rehabilitation, 18(5–6), 627–650. https://doi.org/10.1080/09602010802041238.Gracey, F., Evans, J. J., & Malley, D. (2009). Capturing process and outcome in complex rehabilitation interventions: a “Y-shaped” model. Neuropsychological Rehabilitation, 19(6), 867–890. https://doi.org/10.1080/09602010903027763.Greenwald, A. G., & Farnham, S. D. (2000). Using the Implicit Association Test to measure self-esteem and self-concept. Journal of Personality and Social Psychology, 79(6), 1022–1038. https://doi.org/10.1037/0022-3514.79.6.1022.Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. K. (1998). Measuring individual differences in implicit cognition: the Implicit Association Test. Journal of Personality and Social Psychology, 74(6), 1464–1480. https://doi.org/10.1037/0022-3514.74.6.1464.Greenwald, A. G., Nosek, B. A., & Banaji, M. R. (2003). Understanding and using the Implicit Association Test: I. An improved scoring algorithm. Journal of Personality and Social Psychology, 85(2), 197–216. https://doi.org/10.1037/0022-3514.85.2.197.Hackett, M. L., Yapa, C., Parag, V., & Anderson, C. S. (2005). Frequency of depression after stroke: a systematic review of observational studies. Stroke, 36(6), 1330–1340. https://doi.org/10.1161/01.STR.0000165928.19135.35.Haeffel, G. J., Abramson, L. Y., Brazy, P. C., Shah, J. Y., Teachman, B. A., & Nosek, B. A. (2007). Explicit and implicit cognition: a preliminary test of a dual-process theory of cognitive vulnerability to depression. Behaviour Research and Therapy, 45(6), 1155–1167. https://doi.org/10.1016/j.brat.2006.09.003.Ingram, R. E. (1984). Toward an information-processing analysis of depression. Cognitive Therapy and Research, 8(5), 443–477. https://doi.org/10.1007/BF01173284.Izuma, K., Kennedy, K., Fitzjohn, A., Sedikides, C., & Shibata, K. (2018). Neural activity in the reward-related brain regions predicts implicit self-esteem: a novel validity test of psychological measures using neuroimaging. Journal of Personality and Social Psychology, 114(3), 343–357. https://doi.org/10.1037/pspa0000114.Khan-Bourne, N., & Brown, R. G. (2003). Cognitive behaviour therapy for the treatment of depression in individuals with brain injury. Neuropsychological Rehabilitation, 13(1–2), 89–107. https://doi.org/10.1080/09602010244000318.Kim, H. S., & Moore, M. T. (2019). Symptoms of depression and the discrepancy between implicit and explicit self-esteem. Journal of Behavior Therapy and Experimental Psychiatry, 63, 1–5. https://doi.org/10.1016/j.jbtep.2018.12.001.Lane, K. A., Banaji, M. R., Nosek, B. A., & Greenwald, A. G. (2007). Understanding and using the Implicit Association Test: IV. What we know (so far) about the method. In B. Wittenbrink & N. Schwarz (Eds.), Implicit measures of attitudes (pp. 59–102). New York: The Guildford Press.Leary, M. R., Tate, E. B., Adams, C. E., Batts Allen, A., & Hancock, J. (2007). Self-compassion and reactions to unpleasant self-relevant events: the implications of treating oneself kindly. Personality Processes and Individual Differences, 92(5), 887–904. https://doi.org/10.1037/0022-3514.92.5.887.Lennon, A., Bramham, J., Carroll, À., McElligott, J., Carton, S., Waldron, B., Fortune, D., Burke, T., Fitzhenry, M., & Benson, C. (2014). A qualitative exploration of how individuals reconstruct their sense of self following acquired brain injury in comparison with spinal cord injury. Brain Injury, 28(1), 27–37. https://doi.org/10.3109/02699052.2013.848378.Longworth, C., Deakins, J., Rose, D., & Gracey, F. (2018). The nature of self-esteem and its relationship to anxiety and depression in adult acquired brain injury. Neuropsychological Rehabilitation, 28(7), 1078–1094. https://doi.org/10.1080/09602011.2016.1226185.MacBeth, A., & Gumley, A. (2012). Exploring compassion: a meta-analysis of the association between self-compassion and psychopathology. Clinical Psychology Review, 32(6), 545–552. https://doi.org/10.1016/j.cpr.2012.06.003.McDonald, S., Saad, A., & James, C. (2011). Social dysdecorum following severe traumatic brain injury: loss of implicit social knowledge or loss of control? Journal of Clinical and Experimental Neuropsychology, 33(6), 619–630. https://doi.org/10.1080/13803395.2011.553586.Milne, E., & Grafman, J. (2001). Ventromedial prefrontal cortex lesions in humans eliminate implicit gender stereotyping. The Journal of Neuroscience, 21(12), 1–6.Moors, A., & De Houwer, J. (2006). Automaticity: a theoretical and conceptual analysis. Psychological Bulletin, 132(2), 297–326. https://doi.org/10.1037/0033-2909.132.2.297.Muris, P., & Petrocchi, N. (2017). Protection or vulnerability? A meta-analysis of the relations between the positive and negative components of self-compassion and psychopathology. Clinical Psychology & Psychotherapy, 24(2), 373–383. https://doi.org/10.1002/cpp.2005.Myers, R. (2000). Classical and modern regression with applications (2nd ed.). Belmont, CA: Duxbury.Neff, K. D. (2003). Self-compassion: an alternative conceptualization of a healthy attitude toward oneself. Self and Identity, 2(2), 85–101. https://doi.org/10.1080/15298860309032.Neff, K. D., & Vonk, R. (2009). Self-compassion versus global self-esteem: two different ways of relating to oneself. Journal of Personality, 77, 23–50. https://doi.org/10.1111/j.1467-6494.2008.00537.x.Neff, K. D., Tóth-Király, I., Yarnell, L. M., Arimitsu, K., Castilho, P., Ghorbani, N., Guo, H. X., Hirsch, J. K., Hupfeld, J., Hutz, C. S., Kotsou, I., Lee, W. K., Montero-Marin, J., Sirois, F. M., De Souza, L. K., Svendsen, J. L., Wilkinson, R. B., & Mantzios, M. (2019). Examining the factor structure of the Self-Compassion Scale in 20 diverse samples: support for use of a total score and six subscale scores. Psychological Assessment, 31(1), 27–45. https://doi.org/10.1037/pas0000629.Norton, P. J., & Paulus, D. J. (2017). Transdiagnostic models of anxiety disorder: theoretical and empirical underpinnings. Clinical Psychology Review, 56, 122–137. https://doi.org/10.1016/j.cpr.2017.03.004.Nosek, B. A., & Banaji, M. R. (2001). The go/no-go association task. Social Cognition, 19(6), 625–664. https://doi.org/10.1521/soco.19.6.625.20886.Oddy, M., & Herbert, C. (2003). Intervention with families following brain injury: evidence-based practice. Neuropsychological Rehabilitation, 13(1–2), 259–273. https://doi.org/10.1080/09602010244000345.Ouimet, A. J., Gawronski, B., & Dozois, D. J. A. (2009). Cognitive vulnerability to anxiety: a review and an integrative model. Clinical Psychology Review, 29(6), 459–470. https://doi.org/10.1016/j.cpr.2009.05.004.Ponsford, J., Kelly, A., & Couchman, G. (2014). Self-concept and self-esteem after acquired brain injury: a control group comparison. Brain Injury, 28(2), 146–154. https://doi.org/10.3109/02699052.2013.859733.Raes, F., Pommier, E., Neff, K. D., & Van Gucht, D. (2011). Construction and factorial validation of a short form of the Self-Compassion Scale. Clinical Psychology & Psychotherapy, 18(3), 250–255. https://doi.org/10.1002/cpp.702.Romero, M., Sánchez, A., Marín, C., Navarro, M. D., Ferri, J., & Noé, E. (2012). Clinical usefulness of the Spanish version of the Mississippi Aphasia Screening Test (MASTsp): validation in stroke patients. Neurología (English Edition), 27(4), 216–224. https://doi.org/10.1016/j.nrleng.2011.06.001.Rosenberg, M. (1965). Rosenberg Self-Esteem Scale (RSE). Acceptance and Commitment Therapy. Measures Package, 61, 52 /S0034-98872009000600009.Sandstrom, M. J., & Jordan, R. (2008). Defensive self-esteem and aggression in childhood. Journal of Research in Personality, 42(2), 506–514. https://doi.org/10.1016/j.jrp.2007.07.008.Schönberger, M., & Ponsford, J. (2010). The factor structure of the Hospital Anxiety and Depression Scale in individuals with traumatic brain injury. Psychiatry Research, 179(3), 342–349. https://doi.org/10.1016/j.psychres.2009.07.003.Schröder-Abé, M., Rudolph, A., & Schütz, A. (2007). High implicit self-esteem is not necessarily advantageous: discrepancies between explicit and implicit self-esteem and their relationship with anger expression and psychological health. European Journal of Personality, 21(3), 319–339. https://doi.org/10.1002/per.626.Scoglio, A. A. J., Rudat, D. A., Garvert, D., Jarmolowski, M., Jackson, C., & Herman, J. L. (2018). Self-compassion and responses to trauma: the role of emotion regulation. Journal of Interpersonal Violence, 33(13), 2016–2036. https://doi.org/10.1177/0886260515622296.Sloan, E., Hall, K., Moulding, R., Bryce, S., Mildred, H., & Staiger, P. K. (2017). Emotion regulation as a transdiagnostic treatment construct across anxiety, depression, substance, eating and borderline personality disorders: a systematic review. Clinical Psychology Review, 57, 141–163. https://doi.org/10.1016/j.cpr.2017.09.002.Smeijers, D., Vrijsen, J. N., van Oostrom, I., Isaac, L., Speckens, A., Becker, E. S., & Rinck, M. (2017). Implicit and explicit self-esteem in remitted depressed patients. Journal of Behavior Therapy and Experimental Psychiatry, 54, 301–306. https://doi.org/10.1016/j.jbtep.2016.10.006.Smith, E. R., & DeCoster, J. (2000). Dual-process models in social and cognitive psychology: conceptual integration and links to underlying memory systems. Personality and Social Psychology Review, 4(2), 108–131. https://doi.org/10.1207/S15327957PSPR0402_01.Sowislo, J. F., & Orth, U. (2013). Does low self-esteem predict depression and anxiety? A meta-analysis of longitudinal studies. Psychological Bulletin, 139(1), 213–240. https://doi.org/10.1037/a0028931.Strack, F., & Deutsch, R. (2004). Reflective and impulsive determinants of social behavior. Personality and Social Psychology Review, 8(3), 220–247. https://doi.org/10.1207/s15327957pspr0803_1.Terol-Cantero, M. C., Cabrera-Perona, V., & Martín-Aragón, M. (2015). Hospital Anxiety and Depression Scale (HADS) review in Spanish samples. Anales de Psicología, 31(2), 494–503. https://doi.org/10.6018/analesps.31.2.172701.Tóth-Király, I., & Neff, K. D. (2020). Is self-compassion universal? Support for the measurement invariance of the Self-Compassion Scale across populations. Assessment. Advance online publication. https://doi.org/10.1177/1073191120926232.Turner-Stokes, L., & Wade, D. (2003). Rehabilitation following acquired brain injury: National Clinical Guidelines. Clinical Medicine, 4(1), 61–65. https://doi.org/10.7861/clinmedicine.4-1-61.Tyerman, A., & Humphrey, M. (1984). Changes in self-concept following severe head injury. International Journal of Rehabilitation Research, 7(1), 11–23. https://doi.org/10.1097/00004356-198403000-00002.Valiente, C., Cantero, D., Vázquez, C., Sanchez, Á., Provencio, M., & Espinosa, R. (2011). Implicit and explicit self-esteem discrepancies in paranoia and depression. Journal of Abnormal Psychology, 120(3), 691–699. https://doi.org/10.1037/a0022856.Vickery, C. D., Sepehri, A., & Evans, C. C. (2008). Self-esteem in an acute stroke rehabilitation sample: a control group comparison. Clinical Rehabilitation, 22(2), 179–187. https://doi.org/10.1177/0269215507080142.Whelan-Goodinson, R., Ponsford, J., & Schönberger, M. (2009). Validity of the Hospital Anxiety and Depression Scale to assess depression and anxiety following traumatic brain injury as compared with the Structured Clinical Interview for DSM-IV. Journal of Affective Disorders, 114(1–3), 94–102. https://doi.org/10.1016/j.jad.2008.06.007.Zeigler-Hill, V. (2006). Discrepancies between implicit and explicit self-esteem: Implications for narcissism and self-esteem instability. Journal of Personality, 74(1), 119–144. https://doi.org/10.1111/j.1467-6494.2005.00371.x.Zessin, U., Dickhäuser, O., & Garbade, S. (2015). The relationship between self-compassion and well-being: a meta-analysis. Applied Psychology. Health and Well-Being, 7(3), 340–364. https://doi.org/10.1111/aphw.12051.Zhang, J. W., Chen, S., & Tomova Shakur, T. K. (2020). From me to you: Self-compassion predicts acceptance of own and others’ imperfections. Personality and Social Psychology Bulletin, 46(2), 228–242. https://doi.org/10.1177/0146167219853846.Zigmond, A. S., & Snaith, R. P. (1983). The Hospital Anxiety and Depression Scale. Acta Psychiatrica Scandinavica, 67(6), 361–370. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x

    Projected Loss of a Salamander Diversity Hotspot as a Consequence of Projected Global Climate Change

    Get PDF
    Background: Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation. Many plethodontid species in southern Appalachia exist in high elevation habitats that may be at or near their thermal maxima, and may also have limited dispersal abilities across warmer valley bottoms. Methodology/Principal Findings: We used a maximum-entropy approach (program Maxent) to model the suitable climatic habitat of 41 plethodontid salamander species inhabiting the Appalachian Highlands region (33 individual species and eight species included within two species complexes). We evaluated the relative change in suitable climatic habitat for these species in the Appalachian Highlands from the current climate to the years 2020, 2050, and 2080, using both the HADCM3 and the CGCM3 models, each under low and high CO 2 scenarios, and using two-model thresholds levels (relative suitability thresholds for determining suitable/unsuitable range), for a total of 8 scenarios per species. Conclusion/Significance: While models differed slightly, every scenario projected significant declines in suitable habitat within the Appalachian Highlands as early as 2020. Species with more southern ranges and with smaller ranges had larger projected habitat loss. Despite significant differences in projected precipitation changes to the region, projections did no

    Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption

    Get PDF
    To prevent dehydration, terrestrial animals and humans have developed a sensitive and versatile system to maintain their water homeostasis. In states of hypernatremia or hypovolemia, the antidiuretic hormone vasopressin (AVP) is released from the pituitary and binds its type-2 receptor in renal principal cells. This triggers an intracellular cAMP signaling cascade, which phosphorylates aquaporin-2 (AQP2) and targets the channel to the apical plasma membrane. Driven by an osmotic gradient, pro-urinary water then passes the membrane through AQP2 and leaves the cell on the basolateral side via AQP3 and AQP4 water channels. When water homeostasis is restored, AVP levels decline, and AQP2 is internalized from the plasma membrane, leaving the plasma membrane watertight again. The action of AVP is counterbalanced by several hormones like prostaglandin E2, bradykinin, dopamine, endothelin-1, acetylcholine, epidermal growth factor, and purines. Moreover, AQP2 is strongly involved in the pathophysiology of disorders characterized by renal concentrating defects, as well as conditions associated with severe water retention. This review focuses on our recent increase in understanding of the molecular mechanisms underlying AVP-regulated renal water transport in both health and disease
    corecore