215 research outputs found
The role of antiphase boundaries during ion sputtering and solid phase epitaxy of Si(001)
The Si(001) surface morphology during ion sputtering at elevated temperatures
and solid phase epitaxy following ion sputtering at room temperature has been
investigated using scanning tunneling microscopy. Two types of antiphase
boundaries form on Si(001) surfaces during ion sputtering and solid phase
epitaxy. One type of antiphase boundary, the AP2 antiphase boundary,
contributes to the surface roughening. AP2 antiphase boundaries are stable up
to 973K, and ion sputtering and solid phase epitaxy performed at 973K result in
atomically flat Si(001) surfaces.Comment: 16 pages, 4 figures, to be published in Surface Scienc
Physics demos for all UVEG degrees: a unique project in Spain
The Physics Demo Project at the University of Valencia (www.uv.es/fisicademos) has developed a collection of physics demonstrations to be used during lectures. It consists of more than 130 experimental demos about different physics topics. More than 30 professors borrow them whenever they lecture on physics in any of our 40 courses in 17 different science or technical degrees, involving 246 ECTS and more than 3500 students. Each demo kit with a simple experimental set displays a particular physics phenomenon. An on-line user guide highlights the main physics principles involved, instructions on how to use it and advices of how to link it to the theoretical concepts or to technical applications. Demo lectures (and collections) are a usual and widespread practice in many countries but not in Spain. This unique initiative aims at the recovery of this practice by involving a growing collaborative team of users and with the aid of educational innovation projects. Here we explain the project content, organization and recent developments. Our experience, together with the positive students comments, allows us to draw the following conclusions: demos introduce the real sensible world in the lecture hall, providing the necessary link between concepts and everyday life, and becoming, again, something more than "chalk and talk"
Secondary metabolite profiling, growth profiles and other tools for species recognition and important Aspergillus mycotoxins
Species in the genus Aspergillus have been classified primarily
based on morphological features. Sequencing of house-hold genes has also been
used in Aspergillus taxonomy and phylogeny, while extrolites and
physiological features have been used less frequently. Three independent ways
of classifying and identifying aspergilli appear to be applicable: Morphology
combined with physiology and nutritional features, secondary metabolite
profiling and DNA sequencing. These three ways of identifying
Aspergillus species often point to the same species. This consensus
approach can be used initially, but if consensus is achieved it is recommended
to combine at least two of these independent ways of characterising aspergilli
in a polyphasic taxonomy. The chemical combination of secondary metabolites
and DNA sequence features has not been explored in taxonomy yet, however.
Examples of these different taxonomic approaches will be given for
Aspergillus section Nigri
Detecting a stochastic gravitational wave background with the Laser Interferometer Space Antenna
The random superposition of many weak sources will produce a stochastic
background of gravitational waves that may dominate the response of the LISA
(Laser Interferometer Space Antenna) gravitational wave observatory. Unless
something can be done to distinguish between a stochastic background and
detector noise, the two will combine to form an effective noise floor for the
detector. Two methods have been proposed to solve this problem. The first is to
cross-correlate the output of two independent interferometers. The second is an
ingenious scheme for monitoring the instrument noise by operating LISA as a
Sagnac interferometer. Here we derive the optimal orbital alignment for
cross-correlating a pair of LISA detectors, and provide the first analytic
derivation of the Sagnac sensitivity curve.Comment: 9 pages, 11 figures. Significant changes to the noise estimate
Observation of a Narrow Resonance of Mass 2.46 GeV/c^2 Decaying to D_s^*+ pi^0 and Confirmation of the D_sJ^* (2317) State
Using 13.5 inverse fb of e+e- annihilation data collected with the CLEO II
detector we have observed a narrow resonance in the Ds*+pi0 final state, with a
mass near 2.46 GeV. The search for such a state was motivated by the recent
discovery by the BaBar Collaboration of a narrow state at 2.32 GeV, the
DsJ*(2317)+ that decays to Ds+pi0. Reconstructing the Ds+pi0 and Ds*+pi0 final
states in CLEO data, we observe peaks in both of the corresponding
reconstructed mass difference distributions, dM(Dspi0)=M(Dspi0)-M(Ds) and
dM(Ds*pi0)=M(Ds*pi0)-M(Ds*), both of them at values near 350 MeV. We interpret
these peaks as signatures of two distinct states, the DsJ*(2317)+ plus a new
state, designated as the DsJ(2463)+. Because of the similar dM values, each of
these states represents a source of background for the other if photons are
lost, ignored or added. A quantitative accounting of these reflections confirms
that both states exist. We have measured the mean mass differences
= 350.0 +/- 1.2 [stat] +/- 1.0 [syst] MeV for the DsJ*(2317) state, and
= 351.2 +/- 1.7 [stat] +/- 1.0 [syst] MeV for the new DsJ(2463)+
state. We have also searched, but find no evidence, for decays of the two
states via the channels Ds*+gamma, Ds+gamma, and Ds+pi+pi-. The observations of
the two states at 2.32 and 2.46 GeV, in the Ds+pi0 and Ds*+pi0 decay channels
respectively, are consistent with their interpretations as (c anti-strange)
mesons with orbital angular momentum L=1, and spin-parities of 0+ and 1+.Comment: 16 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, version to be published in Physical
Review D; minor modifications and fixes to typographical errors, plus an
added section on production properties. The main results are unchanged; they
supersede those reported in hep-ex/030501
Measurement of the Charge Asymmetry in
We report on a search for a CP-violating asymmetry in the charmless hadronic
decay B -> K*(892)+- pi-+, using 9.12 fb^-1 of integrated luminosity produced
at \sqrt{s}=10.58 GeV and collected with the CLEO detector. We find A_{CP}(B ->
K*(892)+- pi-+) = 0.26+0.33-0.34(stat.)+0.10-0.08(syst.), giving an allowed
interval of [-0.31,0.78] at the 90% confidence level.Comment: 7 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Study of the q^2-Dependence of B --> pi ell nu and B --> rho(omega)ell nu Decay and Extraction of |V_ub|
We report on determinations of |Vub| resulting from studies of the branching
fraction and q^2 distributions in exclusive semileptonic B decays that proceed
via the b->u transition. Our data set consists of the 9.7x10^6 BBbar meson
pairs collected at the Y(4S) resonance with the CLEO II detector. We measure
B(B0 -> pi- l+ nu) = (1.33 +- 0.18 +- 0.11 +- 0.01 +- 0.07)x10^{-4} and B(B0 ->
rho- l+ nu) = (2.17 +- 0.34 +0.47/-0.54 +- 0.41 +- 0.01)x10^{-4}, where the
errors are statistical, experimental systematic, systematic due to residual
form-factor uncertainties in the signal, and systematic due to residual
form-factor uncertainties in the cross-feed modes, respectively. We also find
B(B+ -> eta l+ nu) = (0.84 +- 0.31 +- 0.16 +- 0.09)x10^{-4}, consistent with
what is expected from the B -> pi l nu mode and quark model symmetries. We
extract |Vub| using Light-Cone Sum Rules (LCSR) for 0<= q^2<16 GeV^2 and
Lattice QCD (LQCD) for 16 GeV^2 <= q^2 < q^2_max. Combining both intervals
yields |Vub| = (3.24 +- 0.22 +- 0.13 +0.55/-0.39 +- 0.09)x10^{-3}$ for pi l nu,
and |Vub| = (3.00 +- 0.21 +0.29/-0.35 +0.49/-0.38 +-0.28)x10^{-3} for rho l nu,
where the errors are statistical, experimental systematic, theoretical, and
signal form-factor shape, respectively. Our combined value from both decay
modes is |Vub| = (3.17 +- 0.17 +0.16/-0.17 +0.53/-0.39 +-0.03)x10^{-3}.Comment: 45 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Search for CP Violation in D^0--> K_S^0 pi^+pi^-
We report on a search for CP violation in the decay of D0 and D0B to Kshort
pi+pi-. The data come from an integrated luminosity of 9.0 1/fb of e+e-
collisions at sqrt(s) ~ 10 GeV recorded with the CLEO II.V detector. The
resonance substructure of this decay is well described by ten quasi-two-body
decay channels (K*-pi+, K*0(1430)-pi+, K*2(1430)-pi+, K*(1680)-pi+, Kshort rho,
Kshort omega, Kshort f0(980), Kshort f2(1270), Kshort f0(1370), and the ``wrong
sign'' K*+ pi-) plus a small non-resonant component. We observe no evidence for
CP violation in the amplitudes and phases that describe the decay D0 to K_S^0
pi+pi-.Comment: 10 pages, 3 figures, also available at
http://w4.lns.cornell.edu/public/CLNS/, submitted to PR
Measurement of Lepton Momentum Moments in the Decay bar{B} \to X \ell \bar{\nu} and Determination of Heavy Quark Expansion Parameters and |V_cb|
We measure the primary lepton momentum spectrum in B-bar to X l nu decays,
for p_l > 1.5 GeV/c in the B rest frame. From this, we calculate various
moments of the spectrum. In particular, we find R_0 = [int(E_l>1.7)
(dGam/dE_sl)*dE_l] / [int(E_l>1.5) (dGam/dE_sl)*dE_l] = 0.6187 +/- 0.0014_stat
+/- 0.0016_sys and R_1 = [int(E_l>1.5) E_l(dGam/dE_sl)*dE_l] / [int(E_l>1.5)
(dGam/dE_sl)*dE_l] = (1.7810 +/- 0.0007_stat +/- 0.0009_sys) GeV. We use these
moments to determine non-perturbative parameters governing the semileptonic
width. In particular, we extract the Heavy Quark Expansion parameters
Lambda-bar = (0.39 +/- 0.03_stat +/- 0.06_sys +/- 0.12_th) GeV and lambda_1 =
(-0.25 +/- 0.02_stat +/- 0.05_sys +/- 0.14_th) GeV^2. The theoretical
constraints used are evaluated through order 1/M_B^3 in the non-perturbative
expansion and beta_0*alpha__s^2 in the perturbative expansion. We use these
parameters to extract |V_cb| from the world average of the semileptonic width
and find |V_cb| = (40.8 +/- 0.5_Gam-sl +/- 0.4_(lambda_1,Lambda-bar)-exp +/-
0.9_th) x 10^-3. In addition, we extract the short range b-quark mass m_b^1S =
(4.82 +/- 0.07_exp +/- 0.11_th) GeV/c^2. Finally, we discuss the implications
of our measurements for the theoretical understanding of inclusive semileptonic
processes.Comment: 21 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Measurement of the Mass Splittings between the States
We present new measurements of photon energies and branching fractions for
the radiative transitions: Upsilon(2S)->gamma+chi_b(J=0,1,2). The masses of the
chi_b states are determined from the measured radiative photon energies. The
ratio of mass splittings between the chi_b substates,
r==(M[J=2]-M[J=1])/(M[J=1]-M[J=0]) with M the chi_b mass, provides information
on the nature of the bbbar confining potential. We find
r(1P)=0.54+/-0.02+/-0.02. This value is in conflict with the previous world
average, but more consistent with the theoretical expectation that r(1P)<r(2P);
i.e., that this mass splittings ratio is smaller for the chi_b(1P) triplet than
for the chi_b(2P) triplet.Comment: 11 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
- …