214 research outputs found

    Treatment of distal humeral fractures using conventional implants. Biomechanical evaluation of a new implant configuration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the face of costly fixation hardware with varying performance for treatment of distal humeral fractures, a novel technique (U-Frame) is proposed using conventional implants in a 180° plate arrangement. In this in-vitro study the biomechanical stability of this method was compared with the established technique which utilizes angular stable locking compression plates (LCP) in a 90° configuration.</p> <p>Methods</p> <p>An unstable distal 3-part fracture (AO 13-C2.3) was created in eight pairs of human cadaveric humeri. All bone pairs were operated with either the "Frame" technique, where two parallel plates are distally interconnected, or with the LCP technique. The specimens were cyclically loaded in simulated flexion and extension of the arm until failure of the construct occurred. Motion of all fragments was tracked by means of optical motion capturing. Construct stiffness and cycles to failure were identified for all specimens.</p> <p>Results</p> <p>Compared to the LCP constructs, the "Frame" technique revealed significant higher construct stiffness in extension of the arm (P = 0.01). The stiffness in flexion was not significantly different (P = 0.16). Number of cycles to failure was found significantly larger for the "Frame" technique (P = 0.01).</p> <p>Conclusions</p> <p>In an in-vitro context the proposed method offers enhanced biomechanical stability and at the same time significantly reduces implant costs.</p

    Rab proteins and Rab-associated proteins: major actors in the mechanism of protein-trafficking disorders

    Get PDF
    Ras-associated binding (Rab) proteins and Rab-associated proteins are key regulators of vesicle transport, which is essential for the delivery of proteins to specific intracellular locations. More than 60 human Rab proteins have been identified, and their function has been shown to depend on their interaction with different Rab-associated proteins regulating Rab activation, post-translational modification and intracellular localization. The number of known inherited disorders of vesicle trafficking due to Rab cycle defects has increased substantially during the past decade. This review describes the important role played by Rab proteins in a number of rare monogenic diseases as well as common multifactorial human ones. Although the clinical phenotype in these monogenic inherited diseases is highly variable and dependent on the type of tissue in which the defective Rab or its associated protein is expressed, frequent features are hypopigmentation (Griscelli syndrome), eye defects (Choroideremia, Warburg Micro syndrome and Martsolf syndrome), disturbed immune function (Griscelli syndrome and Charcot–Marie–Tooth disease) and neurological dysfunction (X-linked non-specific mental retardation, Charcot–Marie–Tooth disease, Warburg Micro syndrome and Martsolf syndrome). There is also evidence that alterations in Rab function play an important role in the progression of multifactorial human diseases, such as infectious diseases and type 2 diabetes. Rab proteins must not only be bound to GTP, but they need also to be ‘prenylated’—i.e. bound to the cell membranes by isoprenes, which are intermediaries in the synthesis of cholesterol (e.g. geranyl geranyl or farnesyl compounds). This means that isoprenylation can be influenced by drugs such as statins, which inhibit isoprenylation, or biphosphonates, which inhibit that farnesyl pyrophosphate synthase necessary for Rab GTPase activity. Conclusion: Although protein-trafficking disorders are clinically heterogeneous and represented in almost every subspeciality of pediatrics, the identification of common pathogenic mechanisms may provide a better diagnosis and management of patients with still unknown Rab cycle defects and stimulate the development of therapeutic agents

    Addressing challenges in the production and analysis of illumina sequencing data

    Get PDF
    Advances in DNA sequencing technologies have made it possible to generate large amounts of sequence data very rapidly and at substantially lower cost than capillary sequencing. These new technologies have specific characteristics and limitations that require either consideration during project design, or which must be addressed during data analysis. Specialist skills, both at the laboratory and the computational stages of project design and analysis, are crucial to the generation of high quality data from these new platforms. The Illumina sequencers (including the Genome Analyzers I/II/IIe/IIx and the new HiScan and HiSeq) represent a widely used platform providing parallel readout of several hundred million immobilized sequences using fluorescent-dye reversible-terminator chemistry. Sequencing library quality, sample handling, instrument settings and sequencing chemistry have a strong impact on sequencing run quality. The presence of adapter chimeras and adapter sequences at the end of short-insert molecules, as well as increased error rates and short read lengths complicate many computational analyses. We discuss here some of the factors that influence the frequency and severity of these problems and provide solutions for circumventing these. Further, we present a set of general principles for good analysis practice that enable problems with sequencing runs to be identified and dealt with

    Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii

    Get PDF
    Background Photosynthetic organisms convert atmospheric carbon dioxide into numerous metabolites along the pathways to make new biomass. Aquatic photosynthetic organisms, which fix almost half of global inorganic carbon, have great potential: as a carbon dioxide fixation method, for the economical production of chemicals, or as a source for lipids and starch which can then be converted to biofuels. To harness this potential through metabolic engineering and to maximize production, a more thorough understanding of photosynthetic metabolism must first be achieved. A model algal species, C. reinhardtii, was chosen and the metabolic network reconstructed. Intracellular fluxes were then calculated using flux balance analysis (FBA). Results The metabolic network of primary metabolism for a green alga, C. reinhardtii, was reconstructed using genomic and biochemical information. The reconstructed network accounts for the intracellular localization of enzymes to three compartments and includes 484 metabolic reactions and 458 intracellular metabolites. Based on BLAST searches, one newly annotated enzyme (fructose-1,6-bisphosphatase) was added to the Chlamydomonas reinhardtii database. FBA was used to predict metabolic fluxes under three growth conditions, autotrophic, heterotrophic and mixotrophic growth. Biomass yields ranged from 28.9 g per mole C for autotrophic growth to 15 g per mole C for heterotrophic growth. Conclusion The flux balance analysis model of central and intermediary metabolism in C. reinhardtii is the first such model for algae and the first model to include three metabolically active compartments. In addition to providing estimates of intracellular fluxes, metabolic reconstruction and modelling efforts also provide a comprehensive method for annotation of genome databases. As a result of our reconstruction, one new enzyme was annotated in the database and several others were found to be missing; implying new pathways or non-conserved enzymes. The use of FBA to estimate intracellular fluxes also provides flux values that can be used as a starting point for rational engineering of C. reinhardtii. From these initial estimates, it is clear that aerobic heterotrophic growth on acetate has a low yield on carbon, while mixotrophically and autotrophically grown cells are significantly more carbon efficient

    Mathematical modelling of clostridial acetone-butanol-ethanol fermentation

    Get PDF
    Clostridial acetone-butanol-ethanol (ABE) fermentation features a remarkable shift in the cellular metabolic activity from acid formation, acidogenesis, to the production of industrial-relevant solvents, solventogensis. In recent decades, mathematical models have been employed to elucidate the complex interlinked regulation and conditions that determine these two distinct metabolic states and govern the transition between them. In this review, we discuss these models with a focus on the mechanisms controlling intra- and extracellular changes between acidogenesis and solventogenesis. In particular, we critically evaluate underlying model assumptions and predictions in the light of current experimental knowledge. Towards this end, we briefly introduce key ideas and assumptions applied in the discussed modelling approaches, but waive a comprehensive mathematical presentation. We distinguish between structural and dynamical models, which will be discussed in their chronological order to illustrate how new biological information facilitates the ‘evolution’ of mathematical models. Mathematical models and their analysis have significantly contributed to our knowledge of ABE fermentation and the underlying regulatory network which spans all levels of biological organization. However, the ties between the different levels of cellular regulation are not well understood. Furthermore, contradictory experimental and theoretical results challenge our current notion of ABE metabolic network structure. Thus, clostridial ABE fermentation still poses theoretical as well as experimental challenges which are best approached in close collaboration between modellers and experimentalists

    Neutrality and Robustness in Evo-Devo: Emergence of Lateral Inhibition

    Get PDF
    Embryonic development is defined by the hierarchical dynamical process that translates genetic information (genotype) into a spatial gene expression pattern (phenotype) providing the positional information for the correct unfolding of the organism. The nature and evolutionary implications of genotype–phenotype mapping still remain key topics in evolutionary developmental biology (evo-devo). We have explored here issues of neutrality, robustness, and diversity in evo-devo by means of a simple model of gene regulatory networks. The small size of the system allowed an exhaustive analysis of the entire fitness landscape and the extent of its neutrality. This analysis shows that evolution leads to a class of robust genetic networks with an expression pattern characteristic of lateral inhibition. This class is a repertoire of distinct implementations of this key developmental process, the diversity of which provides valuable clues about its underlying causal principles

    OptCom: A Multi-Level Optimization Framework for the Metabolic Modeling and Analysis of Microbial Communities

    Get PDF
    Microorganisms rarely live isolated in their natural environments but rather function in consolidated and socializing communities. Despite the growing availability of high-throughput sequencing and metagenomic data, we still know very little about the metabolic contributions of individual microbial players within an ecological niche and the extent and directionality of interactions among them. This calls for development of efficient modeling frameworks to shed light on less understood aspects of metabolism in microbial communities. Here, we introduce OptCom, a comprehensive flux balance analysis framework for microbial communities, which relies on a multi-level and multi-objective optimization formulation to properly describe trade-offs between individual vs. community level fitness criteria. In contrast to earlier approaches that rely on a single objective function, here, we consider species-level fitness criteria for the inner problems while relying on community-level objective maximization for the outer problem. OptCom is general enough to capture any type of interactions (positive, negative or combinations thereof) and is capable of accommodating any number of microbial species (or guilds) involved. We applied OptCom to quantify the syntrophic association in a well-characterized two-species microbial system, assess the level of sub-optimal growth in phototrophic microbial mats, and elucidate the extent and direction of inter-species metabolite and electron transfer in a model microbial community. We also used OptCom to examine addition of a new member to an existing community. Our study demonstrates the importance of trade-offs between species- and community-level fitness driving forces and lays the foundation for metabolic-driven analysis of various types of interactions in multi-species microbial systems using genome-scale metabolic models

    Recreational and occupational field exposure to freshwater cyanobacteria – a review of anecdotal and case reports, epidemiological studies and the challenges for epidemiologic assessment

    Get PDF
    Cyanobacteria are common inhabitants of freshwater lakes and reservoirs throughout the world. Under favourable conditions, certain cyanobacteria can dominate the phytoplankton within a waterbody and form nuisance blooms. Case reports and anecdotal references dating from 1949 describe a range of illnesses associated with recreational exposure to cyanobacteria: hay fever-like symptoms, pruritic skin rashes and gastro-intestinal symptoms are most frequently reported. Some papers give convincing descriptions of allergic reactions while others describe more serious acute illnesses, with symptoms such as severe headache, pneumonia, fever, myalgia, vertigo and blistering in the mouth. A coroner in the United States found that a teenage boy died as a result of accidentally ingesting a neurotoxic cyanotoxin from a golf course pond. This death is the first recorded human fatality attributed to recreational exposure to cyanobacteria, although uncertainties surround the forensic identification of the suspected cyanotoxin in this case. We systematically reviewed the literature on recreational exposure to freshwater cyanobacteria. Epidemiological data are limited, with six studies conducted since 1990. Statistically significant increases in symptoms were reported in individuals exposed to cyanobacteria compared to unexposed counterparts in two Australian cohort studies, though minor morbidity appeared to be the main finding. The four other small studies (three from the UK, one Australian) did not report any significant association. However, the potential for serious injury or death remains, as freshwater cyanobacteria under bloom conditions are capable of producing potent toxins that cause specific and severe dysfunction to hepatic or central nervous systems. The exposure route for these toxins is oral, from ingestion of recreational water, and possibly by inhalation. A range of freshwater microbial agents may cause acute conditions that present with features that resemble illnesses attributed to contact with cyanobacteria and, conversely, acute illness resulting from exposure to cyanobacteria or cyanotoxins in recreational waters could be misdiagnosed. Accurately assessing exposure to cyanobacteria in recreational waters is difficult and unreliable at present, as specific biomarkers are unavailable. However, diagnosis of cyanobacteria-related illness should be considered for individuals presenting with acute illness following freshwater contact if a description is given of a waterbody visibly affected by planktonic mass development

    Knowledge-to-action processes in SHRTN collaborative communities of practice: A study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Seniors Health Research Transfer Network (SHRTN) Collaborative is a network of networks that work together to improve the health and health care of Ontario seniors. The collaborative facilitates knowledge exchange through a library service, knowledge brokers (KBs), local implementation teams, collaborative technology, and, most importantly, Communities of Practice (CoPs) whose members work together to identify innovations, translate evidence, and help implement changes.</p> <p>This project aims to increase our understanding of knowledge-to-action (KTA) processes mobilized through SHRTN CoPs that are working to improve the health of Ontario seniors. For this research, KTA refers to the movement of research and experience-based knowledge between social contexts, and the use of that knowledge to improve practice. We will examine the KTA processes themselves, as well as the role of human agents within those processes. The conceptual framework we have adopted to inform our research is the Promoting Action on Research Implementation in Health Services (PARIHS) framework.</p> <p>Methods/design</p> <p>This study will use a multiple case study design (minimum of nine cases over three years) to investigate how SHRTN CoPs work and pursue knowledge exchange in different situations. Each case will yield a unique narrative, framed around the three PARIHS dimensions: evidence, context, and facilitation. Together, the cases will shed light on how SHRTN CoPs approach their knowledge exchange initiatives, and how they respond to challenges and achieve their objectives. Data will be collected using interviews, document analysis, and ethnographic observation.</p> <p>Discussion</p> <p>This research will generate new knowledge about the defining characteristics of CoPs operating in the health system, on leadership roles in CoPs, and on the nature of interaction processes, relationships, and knowledge exchange mechanisms. Our work will yield a better understanding of the factors that contribute to the success or failure of KTA initiatives, and create a better understanding of how local caregiving contexts interact with specific initiatives. Our participatory design will allow stakeholders to influence the practical usefulness of our findings and contribute to improved health services delivery for seniors.</p
    corecore