193 research outputs found

    Simpson's Paradox, Lord's Paradox, and Suppression Effects are the same phenomenon – the reversal paradox

    Get PDF
    This article discusses three statistical paradoxes that pervade epidemiological research: Simpson's paradox, Lord's paradox, and suppression. These paradoxes have important implications for the interpretation of evidence from observational studies. This article uses hypothetical scenarios to illustrate how the three paradoxes are different manifestations of one phenomenon – the reversal paradox – depending on whether the outcome and explanatory variables are categorical, continuous or a combination of both; this renders the issues and remedies for any one to be similar for all three. Although the three statistical paradoxes occur in different types of variables, they share the same characteristic: the association between two variables can be reversed, diminished, or enhanced when another variable is statistically controlled for. Understanding the concepts and theory behind these paradoxes provides insights into some controversial or contradictory research findings. These paradoxes show that prior knowledge and underlying causal theory play an important role in the statistical modelling of epidemiological data, where incorrect use of statistical models might produce consistent, replicable, yet erroneous results

    Afrikaans as Standaard Gemiddelde Europees:Wanneer ‘n lid uit sy taalarea beweeg

    Get PDF
    A recent trend in the study of Standard Average European is the extraterritorial perspective of examining the extent to which non-European languages have converged with this Sprachbund as a result of contact with one or more of its members. The present article complements this line of research in that it investigates the extent to which a European language has diverged from Standard Average European after leaving the linguistic area. The focus is on Dutch, a nuclear member of the Sprachbund, and Afrikaans, its colonial offshoot. The two languages are compared with respect to twelve of the most distinctive linguistic features of Standard Average European. Afrikaans is found to share ten of them with Dutch, including anticausative prominence and formally distinguished intensifiers and reflexives, and could therefore still be considered a core member of the Sprachbund, despite deviations in the expression of negative pronouns and the grammaticality of external possessor constructions. This relatively low degree of divergence may be attributed to the continuity from Settler Dutch to at least the variety of Afrikaans on which the standard language is based and to the important role that Dutch continued to play in the history of Afrikaans

    TNK2 preserves epidermal growth factor receptor expression on the cell surface and enhances migration and invasion of human breast cancer cells

    Get PDF
    Introduction Amplification of the TNK2 gene in primary tumours correlates with poor prognosis. In accordance, TNK2 overexpression was shown to promote invasion of cancer cells - but the mechanism by which TNK2 mediates these effects is unresolved. TNK2 was suggested to regulate Cdc42-driven migration by activation of breast cancer antioestrogen resistance 1 (BCAR1); however, distinct from this effect is evidence for a role of TNK2 in the regulation of epidermal growth factor receptor (EGFR) endocytosis and degradation. In the present study we sought to investigate whether negative targeting of TNK2 by siRNA could be used to inhibit cancer cell invasion, to establish the contribution of its effect on the EGFR and to consequently attempt to resolve the issue of TNK2's mechanism of action. Methods We used siRNA to knockdown expression of TNK2 and its proposed effector BCAR1 in order to analyse the effect of this knockdown on cancer cell behaviour in vitro. We examined morphological changes using phase-contrast microscopy and immunohistochemistry. Functional parameters examined included apoptosis, proliferation, migration and invasion. We also performed flow cytometry analysis to examine EGFR cell surface expression and carried out western blot to examine the total EGFR levels. Results We observed that targeting of TNK2 by siRNA in breast cancer cells resulted in distinct morphological changes characterised by a stellate appearance and an absence of protrusions at membrane edges. These changes were not recapitulated upon siRNA targeting of BCAR1. We thus hypothesised that a component of the effects induced by TNK2 may be independent of BCAR1. Consistent with the idea of an alternative mechanism for TNK2, we observed that TNK2 associates with activated EGFR in breast cancer cells in a TNK2-kinase-independent manner. Furthermore, we demonstrated that TNK2 functions to maintain EGFRs on the cell surface. We could demonstrate that the main functional effect of activating these surface EGFRs in breast cancer cells is stimulation of migration. In accordance, TNK2 silencing by siRNA led to a significant reduction in cell surface EGFR and to a concomitant decrease in the migratory and invasive capacity of breast cancer cells. Conclusion Our data suggest that TNK2 can enhance migration and invasion of breast cancer cells via preservation of EGFR expression, notwithstanding its previously reported signalling via BCAR1, explaining its oncogenic behaviour in vitro and correlation with metastatic human breast cancer in vivo

    Ty1 integrase overexpression leads to integration of non-Ty1 DNA fragments into the genome of Saccharomyces cerevisiae

    Get PDF
    The integrase of the Saccharomyces cerevisiae retrotransposon Ty1 integrates Ty1 cDNA into genomic DNA likely via a transesterification reaction. Little is known about the mechanisms ensuring that integrase does not integrate non-Ty DNA fragments. In an effort to elucidate the conditions under which Ty1 integrase accepts non-Ty DNA as substrate, PCR fragments encompassing a selectable marker gene were transformed into yeast strains overexpressing Ty1 integrase. These fragments do not exhibit similarity to Ty1 cDNA except for the presence of the conserved terminal dinucleotide 5′-TG-CA-3′. The frequency of fragment insertion events increased upon integrase overexpression. Characterization of insertion events by genomic sequencing revealed that most insertion events exhibited clear hallmarks of integrase-mediated reactions, such as 5 bp target site duplication and target site preferences. Alteration of the terminal dinucleotide abolished the suitability of the PCR fragments to serve as substrates. We hypothesize that substrate specificity under normal conditions is mainly due to compartmentalization of integrase and Ty cDNA, which meet in virus-like particles. In contrast, recombinant integrase, which is not confined to virus-like particles, is able to accept non-Ty DNA, provided that it terminates in the proper dinucleotide sequence

    The aldehyde dehydrogenase enzyme 7A1 is functionally involved in prostate cancer bone metastasis

    Get PDF
    High aldehyde dehydrogenase (ALDH) activity can be used to identify tumor-initiating and metastasis-initiating cells in various human carcinomas, including prostate cancer. To date, the functional importance of ALDH enzymes in prostate carcinogenesis, progression and metastasis has remained elusive. Previously we identified strong expression of ALDH7A1 in human prostate cancer cell lines, primary tumors and matched bone metastases. In this study, we evaluated whether ALDH7A1 is required for the acquisition of a metastatic stem/progenitor cell phenotype in human prostate cancer. Knockdown of ALDH7A1 expression resulted in a decrease of the α2hi/αvhi/CD44+ stem/progenitor cell subpopulation in the human prostate cancer cell line PC-3M-Pro4. In addition, ALDH7A1 knockdown significantly inhibited the clonogenic and migratory ability of human prostate cancer cells in vitro. Furthermore, a number of genes/factors involved in migration, invasion and metastasis were affected including transcription factors (snail, snail2, and twist) and osteopontin, an ECM molecule involved in metastasis. Knockdown of ALDH7A1 resulted in decreased intra-bone growth and inhibited experimentally induced (bone) metastasis, while intra-prostatic growth was not affected. In line with these observations, evidence is presented that TGF-β, a key player in cancer invasiveness and bone metastasis, strongly induced ALDH activity while BMP7 (an antagonist of TGF-β signaling) down-regulated ALDH activity. Our findings show, for the first time, that the ALDH7A1 enzyme is functionally involved in the formation of bone metastases and that the effect appeared dependent on the microenvironment, i.e., bone versus prostate
    corecore