53 research outputs found

    A group randomized trial of a complexity-based organizational intervention to improve risk factors for diabetes complications in primary care settings: study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most patients with type 2 diabetes have suboptimal control of their glucose, blood pressure (BP), and lipids – three risk factors for diabetes complications. Although the chronic care model (CCM) provides a roadmap for improving these outcomes, developing theoretically sound implementation strategies that will work across diverse primary care settings has been challenging. One explanation for this difficulty may be that most strategies do not account for the complex adaptive system (CAS) characteristics of the primary care setting. A CAS is comprised of individuals who can learn, interconnect, self-organize, and interact with their environment in a way that demonstrates non-linear dynamic behavior. One implementation strategy that may be used to leverage these properties is practice facilitation (PF). PF creates time for learning and reflection by members of the team in each clinic, improves their communication, and promotes an individualized approach to implement a strategy to improve patient outcomes.</p> <p>Specific objectives</p> <p>The specific objectives of this protocol are to: evaluate the effectiveness and sustainability of PF to improve risk factor control in patients with type 2 diabetes across a variety of primary care settings; assess the implementation of the CCM in response to the intervention; examine the relationship between communication within the practice team and the implementation of the CCM; and determine the cost of the intervention both from the perspective of the organization conducting the PF intervention and from the perspective of the primary care practice.</p> <p>Intervention</p> <p>The study will be a group randomized trial conducted in 40 primary care clinics. Data will be collected on all clinics, with 60 patients in each clinic, using a multi-method assessment process at baseline, 12, and 24 months. The intervention, PF, will consist of a series of practice improvement team meetings led by trained facilitators over 12 months. Primary hypotheses will be tested with 12-month outcome data. Sustainability of the intervention will be tested using 24 month data. Insights gained will be included in a delayed intervention conducted in control practices and evaluated in a pre-post design.</p> <p>Primary and secondary outcomes</p> <p>To test hypotheses, the unit of randomization will be the clinic. The unit of analysis will be the repeated measure of each risk factor for each patient, nested within the clinic. The repeated measure of glycosylated hemoglobin A1c will be the primary outcome, with BP and Low Density Lipoprotein (LDL) cholesterol as secondary outcomes. To study change in risk factor level, a hierarchical or random effect model will be used to account for the nesting of repeated measurement of risk factor within patients and patients within clinics.</p> <p>This protocol follows the CONSORT guidelines and is registered per ICMJE guidelines:</p> <p>Clinical Trial Registration Number</p> <p>NCT00482768</p

    Human Dental Pulp Stem Cells Hook into Biocoral Scaffold Forming an Engineered Biocomplex

    Get PDF
    The aim of this study was to evaluate the behavior of human Dental Pulp Stem Cells (DPSCs), as well as human osteoblasts, when challenged on a Biocoral scaffold, which is a porous natural hydroxyapatite. For this purpose, human DPSCs were seeded onto a three-dimensional (3D) Biocoral scaffold or on flask surface (control). Either normal or rotative (3D) cultures were performed. Scanning electron microscopic analyses, at 8, 24 and 48 h of culture showed that cells did not adhere on the external surface, but moved into the cavities inside the Biocoral structure. After 7, 15 and 30 days of culture, morphological and molecular analyses suggested that the Biocoral scaffold leads DPSCs to hook into the cavities where these cells quickly start to secrete the extra cellular matrix (ECM) and differentiate into osteoblasts. Control human osteoblasts also moved into the internal cavities where they secreted the ECM. Histological sections revealed a diffuse bone formation inside the Biocoral samples seeded with DPSCs or human osteoblasts, where the original scaffold and the new secreted biomaterial were completely integrated and cells were found within the remaining cavities. In addition, RT-PCR analyses showed a significant increase of osteoblast-related gene expression and, above all, of those genes highly expressed in mineralized tissues, including osteocalcin, OPN and BSP. Furthermore, the effects on the interaction between osteogenesis and angiogenesis were observed and substantiated by ELISA assays. Taken together, our results provide clear evidence that DPSCs differentiated into osteoblasts, forming a biocomplex made of Biocoral, ECM and differentiated cells

    Organizational interventions employing principles of complexity science have improved outcomes for patients with Type II diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the development of several models of care delivery for patients with chronic illness, consistent improvements in outcomes have not been achieved. These inconsistent results may be less related to the content of the models themselves, but to their underlying conceptualization of clinical settings as linear, predictable systems. The science of complex adaptive systems (CAS), suggests that clinical settings are non-linear, and increasingly has been used as a framework for describing and understanding clinical systems. The purpose of this study is to broaden the conceptualization by examining the relationship between interventions that leverage CAS characteristics in intervention design and implementation, and effectiveness of reported outcomes for patients with Type II diabetes.</p> <p>Methods</p> <p>We conducted a systematic review of the literature on organizational interventions to improve care of Type II diabetes. For each study we recorded measured process and clinical outcomes of diabetic patients. Two independent reviewers gave each study a score that reflected whether organizational interventions reflected one or more characteristics of a complex adaptive system. The effectiveness of the intervention was assessed by standardizing the scoring of the results of each study as 0 (no effect), 0.5 (mixed effect), or 1.0 (effective).</p> <p>Results</p> <p>Out of 157 potentially eligible studies, 32 met our eligibility criteria. Most studies were felt to utilize at least one CAS characteristic in their intervention designs, and ninety-one percent were scored as either "mixed effect" or "effective." The number of CAS characteristics present in each intervention was associated with effectiveness (p = 0.002). Two individual CAS characteristics were associated with effectiveness: interconnections between participants and co-evolution.</p> <p>Conclusion</p> <p>The significant association between CAS characteristics and effectiveness of reported outcomes for patients with Type II diabetes suggests that complexity science may provide an effective framework for designing and implementing interventions that lead to improved patient outcomes.</p

    Gene-enhanced tissue engineering for dental hard tissue regeneration: (1) overview and practical considerations

    Get PDF
    Gene-based therapies for tissue regeneration involve delivering a specific gene to a target tissue with the goal of changing the phenotype or protein expression profile of the recipient cell; the ultimate goal being to form specific tissues required for regeneration. One of the principal advantages of this approach is that it provides for a sustained delivery of physiologic levels of the growth factor of interest. This manuscript will review the principals of gene-enhanced tissue engineering and the techniques of introducing DNA into cells. Part 2 will review recent advances in gene-based therapies for dental hard tissue regeneration, specifically as it pertains to dentin regeneration/pulp capping and periodontal regeneration

    Gender differences in the use of cardiovascular interventions in HIV-positive persons; the D:A:D Study

    Get PDF
    Peer reviewe

    Bone morphogenetic proteins in human bone regeneration

    No full text
    • …
    corecore