15 research outputs found

    The TIP30 Protein Complex, Arachidonic Acid and Coenzyme A Are Required for Vesicle Membrane Fusion

    Get PDF
    Efficient membrane fusion has been successfully mimicked in vitro using artificial membranes and a number of cellular proteins that are currently known to participate in membrane fusion. However, these proteins are not sufficient to promote efficient fusion between biological membranes, indicating that critical fusogenic factors remain unidentified. We have recently identified a TIP30 protein complex containing TIP30, acyl-CoA synthetase long-chain family member 4 (ACSL4) and Endophilin B1 (Endo B1) that promotes the fusion of endocytic vesicles with Rab5a vesicles, which transport endosomal acidification enzymes vacuolar (H+)-ATPases (V-ATPases) to the early endosomes in vivo. Here, we demonstrate that the TIP30 protein complex facilitates the fusion of endocytic vesicles with Rab5a vesicles in vitro. Fusion of the two vesicles also depends on arachidonic acid, coenzyme A and the synthesis of arachidonyl-CoA by ACSL4. Moreover, the TIP30 complex is able to transfer arachidonyl groups onto phosphatidic acid (PA), producing a new lipid species that is capable of inducing close contact between membranes. Together, our data suggest that the TIP30 complex facilitates biological membrane fusion through modification of PA on membranes

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Photochemistry of Transition Metal Complexes Induced by Outer-Sphere Charge Transfer Excitation

    Get PDF
    The intermolecular (outer sphere, OS) interaction of a reducing and an oxidizing metal complex generates a new optical transition involving charge transfer (CT) from the electron donor to the acceptor. OS CT transitions are classified according to the redox site (metal or ligand). Generally, the interaction between donor and acceptor is facilitated by ion pairs consisting of an oxidizing complex cation and a reducing complex anion. There are also ion pairs which are composed of a metal complex and an organic counter ion as electron donor or acceptor. In addition, the review includes examples of OS CT interaction which do not involve ion pairs at all. — A short introduction into the theory is followed by the discussion of the spectroscopy of OS CT of transition metal complexes. Finally, photoreactions induced by OS CT transitions are reviewed. The optical transfer is frequently followed by a rapid back electron transfer which regenerates the starting complexes. In many cases the primary products are kinetically labile and substitution reactions compete successfully with back electron transfer. As a result stable redox products may be formed. As an alternative, the substitution can be followed by back electron transfer. Product formation appears then as a substitution of the starting complexes. The various possibilities are illustrated by appropriate examples

    The synaptic vesicle.

    No full text

    The Synaptic Vesicle

    No full text
    corecore