275 research outputs found

    Singular potentials and annihilation

    Get PDF
    We discuss the regularization of attractive singular potentials αs/rs-\alpha _{s}/r^{s}, s2s\geq 2 by infinitesimal imaginary addition to interaction constant αs=αs±i0\alpha_{s}=\alpha_{s}\pm i0. Such a procedure enables unique definition of scattering observables and is equal to an absorption (creation) of particles in the origin. It is shown, that suggested regularization is an analytical continuation of the scattering amplitudes of repulsive singular potential in interaction constant αs\alpha_{s}. The nearthreshold properties of regularized in a mentioned way singular potential are examined. We obtain expressions for the scattering lengths, which turn to be complex even for infinitesimal imaginary part of interaction constant. The problem of perturbation of nearthreshold states of regular potential by a singular one is treated, the expressions for level shifts and widths are obtained. We show, that the physical sense of suggested regularization is that the scattering observables are insensitive to any details of the short range modification of singular potential, if there exists sufficiently strong inelastic short range interaction. In this case the scattering observables are determined by solutions of Schrodinger equation with regularized potential (αs±i0)/rs-(\alpha_{s}\pm i0)/r^{s}. We point out that the developed formalism can be applied for the description of systems with short range annihilation, in particular low energy nucleon-antinucleon scattering.Comment: 10 page

    Synthesis of Oligodeoxyribo‐ and Oligoribonucleotides According to the H‐Phosphonate Method

    Full text link
    Oligonucleotides can be synthesized by condensing a protected nucleoside H‐phosphonate monoester with a second nucleoside in the presence of a coupling agent to produce a dinucleoside H‐phosphonate diester. This can then be converted to a dinucleoside phosphate or to a backbone‐modified analog such as a phosphorothioate or phosphoramidite. This unit discusses four alternative methods for synthesizing nucleoside H‐phosphonate monoesters. The methods are efficient and experimentally simple, and use readily available reagents. The unit describes the activation of the monoesters, as well as competing acylation and other potential side reactions.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143594/1/cpnc0304.pd

    The spectrum features of UHECRs below and surrounding GZK

    Full text link
    The energy spectrum of UHECRs is discussed on the basis of the Yakutsk array database analysis. In the region E=0.1 to 30 EeV the showers are detected under trigger-500, while at energies above 30 EeV the whole acceptance area for trigger-1000 is used in order to utilize all the data available in the region of GZK cutoff.Comment: Invited talk at CRIS2004: GZK and surroundings, Catania, Italy, 31.05.04. To appear in Nucl. Phys. B Proc. Supp

    The ^4He trimer as an Efimov system

    Full text link
    We review the results obtained in the last four decades which demonstrate the Efimov nature of the 4^4He three-atomic system.Comment: Review article for a special issue of the Few-Body Systems journal devoted to Efimov physic

    Polarization-resolved strong light–matter coupling in planar GaAs/AlGaAs waveguides

    Get PDF
    We study the influence of optical selection rules and polarization splittings on properties of exciton polaritons in a planar AlGaAs waveguide containing embedded GaAs quantum wells. We demonstrate that transverse electric and transverse magnetic modes couple differently with light- and heavy-hole quantum well excitons, which leads to distinct polarization splittings of the resulting polariton modes. The experimental data are in good agreement with modeling based on theoretical data for the optical selection rules for quantum well excitons

    Relic neutrino masses and the highest energy cosmic rays

    Get PDF
    We consider the possibility that a large fraction of the ultrahigh energy cosmic rays are decay products of Z bosons which were produced in the scattering of ultrahigh energy cosmic neutrinos on cosmological relic neutrinos. We compare the observed ultrahigh energy cosmic ray spectrum with the one predicted in the above Z-burst scenario and determine the required mass of the heaviest relic neutrino as well as the necessary ultrahigh energy cosmic neutrino flux via a maximum likelihood analysis. We show that the value of the neutrino mass obtained in this way is fairly robust against variations in presently unknown quantities, like the amount of neutrino clustering, the universal radio background, and the extragalactic magnetic field, within their anticipated uncertainties. Much stronger systematics arises from different possible assumptions about the diffuse background of ordinary cosmic rays from unresolved astrophysical sources. In the most plausible case that these ordinary cosmic rays are protons of extragalactic origin, one is lead to a required neutrino mass in the range 0.08 eV - 1.3 eV at the 68 % confidence level. This range narrows down considerably if a particular universal radio background is assumed, e.g. to 0.08 eV - 0.40 eV for a large one. The required flux of ultrahigh energy cosmic neutrinos near the resonant energy should be detected in the near future by AMANDA, RICE, and the Pierre Auger Observatory, otherwise the Z-burst scenario will be ruled out.Comment: 19 pages, 22 figures, REVTeX

    Crossovers in Unitary Fermi Systems

    Full text link
    Universality and crossover is described for attractive and repulsive interactions where, respectively, the BCS-BEC crossover takes place and a ferromagnetic phase transition is claimed. Crossovers are also described for optical lattices and multicomponent systems. The crossovers, universal parameters and phase transitions are described within the Leggett and NSR models and calculated in detail within the Jastrow-Slater approximation. The physics of ultracold Fermi atoms is applied to neutron, nuclear and quark matter, nuclei and electrons in solids whenever possible. Specifically, the differences between optical lattices and cuprates is discussed w.r.t. antiferromagnetic, d-wave superfluid phases and phase separation.Comment: 50 pages, 15 figures. Contribution to Lecture Notes in Physics "BCS-BEC crossover and the Unitary Fermi Gas" edited by W. Zwerge

    Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV

    Get PDF
    Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are K+/π=0.161±0.002(stat)±0.024(syst)K^+/\pi^- = 0.161 \pm 0.002 {\rm (stat)} \pm 0.024 {\rm (syst)} and K/π=0.146±0.002(stat)±0.022(syst)K^-/\pi^- = 0.146 \pm 0.002 {\rm (stat)} \pm 0.022 {\rm (syst)} for the most central collisions. The K+/πK^+/\pi^- ratio is lower than the same ratio observed at the SPS while the K/πK^-/\pi^- is higher than the SPS result. Both ratios are enhanced by about 50% relative to p+p and pˉ\bar{\rm p}+p collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
    corecore