154 research outputs found

    Mechanics of the exceptional anuran ear

    Get PDF
    The anuran ear is frequently used for studying fundamental properties of vertebrate auditory systems. This is due to its unique anatomical features, most prominently the lack of a basilar membrane and the presence of two dedicated acoustic end organs, the basilar papilla and the amphibian papilla. Our current anatomical and functional knowledge implies that three distinct regions can be identified within these two organs. The basilar papilla functions as a single auditory filter. The low-frequency portion of the amphibian papilla is an electrically tuned, tonotopically organized auditory end organ. The high-frequency portion of the amphibian papilla is mechanically tuned and tonotopically organized, and it emits spontaneous otoacoustic emissions. This high-frequency portion of the amphibian papilla shows a remarkable, functional resemblance to the mammalian cochlea

    Protein-protein modelling using cryo-EM restraints

    Get PDF
    The recent improvements in cryo-electron microscopy (cryo-EM) in the past few years are now allowing to observe molecular complexes at atomic resolution. As a consequence, numerous structures derived from cryo-EM are now available in the Protein Data Bank. However, if for some complexes atomic resolution is reached, this is not true for all. This is also the case in cryo-electron tomography where the achievable resolution is still limited. Furthermore the resolution in a cryo-EM map is not a constant, with often outer regions being of lower resolution, possibly linked to conformational variability. Although those low to medium resolution EM maps (or regions thereof) cannot directly provide atomic structure of large molecular complexes, they provide valuable information to model the individual components and their assembly into them. Most approaches for this kind of modelling are performing rigid fitting of the individual components into the EM density map. While this would appear an obvious option, they ignore key aspects of molecular recognition, the energetics and flexibility of the interfaces. Moreover, these often restricts the modelling to a unique source of data, the EM density map. In this chapter, we describe a protocol where an EM map is used as restraint in HADDOCK to guide the modelling process.Comment: 28 pages including 7 figure

    Survival in dialysis patients is not different between patients with diabetes as primary renal disease and patients with diabetes as a co-morbid condition

    Get PDF
    On dialysis, survival among patients with diabetes mellitus is inferior to survival of non-diabetic patients. We hypothesized that patients with diabetes as primary renal disease have worse survival compared to patients with diabetes as a co-morbid condition and aimed to compare all-cause mortality between these patient groups. Data were collected from the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD), a multicenter, prospective cohort study in which new patients with end stage renal disease (ESRD) were monitored until transplantation or death. Patients with diabetes as primary cause of ESRD were compared with patients with diabetes as co-morbid condition and both of these patient groups were compared to patients without diabetes. Analysis was performed using Kaplan-Meier and Cox regression. Fifteen % of the patients had diabetic nephropathy as primary renal disease (N = 281); 6% had diabetes as co-morbid condition (N = 107) and 79% had no diabetes (N = 1465). During follow-up 42% of patients (N = 787) died. Compared to non-diabetic patients, mortality risk was increased for both patients with diabetes as primary renal disease HR: 1.9 (95% CI 1.6, 2.3) and for patients with diabetes as co-morbid condition HR: 1.7 (95% CI 1.3, 2.2). Mortality was not significantly higher in patients with diabetes as primary renal disease compared to patients with diabetes as co-morbid condition (HR 1.06; 95% CI 0.79, 1.43). This study in patients with ESRD showed no survival difference between patients with diabetes as primary renal disease and patients with diabetes as a co-morbid condition. Both conditions were associated with increased mortality risk compared to non-diabetic patient

    Is no news good news? Inconclusive genetic test results in BRCA1 and BRCA2 from patients and professionals' perspectives

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Women from families with a high risk of breast or ovarian cancer in which genetic testing for mutations in the <it>BRCA1/2 </it>genes is inconclusive are a vulnerable and understudied group. Furthermore, there are no studies of the professional specialists who treat them - geneticists, genetic counsellors/nurses, oncologists, gynaecologists and breast surgeons.</p> <p>Methods</p> <p>We conducted a small qualitative study that investigated women who had developed breast cancer under the age of 45 and who had an inconclusive <it>BRCA1/2 </it>genetic diagnostic test (where no mutations or unclassified variants were identified). We arranged three focus groups for affected women and their close female relatives - 13 women took part. We also interviewed 12 health professionals who were involved in the care of these women.</p> <p>Results</p> <p>The majority of the women had a good grasp of the meaning of their own or a family member's inconclusive result, but a few indicated some misunderstanding. Most of the women in this study underwent the test for the benefit of others in the family and none mentioned that they were having the test purely for themselves. A difficult issue for sisters of affected women was whether or not to undertake prophylactic breast surgery. The professionals were sensitive to the difficulties in explaining an inconclusive result. Some felt frustrated that technology had not as yet provided them with a better tool for prediction of risk.</p> <p>Conclusions</p> <p>Some of the women were left with the dilemma of what decision to make regarding medical management of their cancer risk. For the most part, the professionals believed that the women should be supported in whatever management decisions they considered best, provided these decisions were based on a complete and accurate understanding of the genetic test that had taken place in the family.</p

    Acute posthypoxic myoclonus after cardiopulmonary resuscitation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute posthypoxic myoclonus (PHM) can occur in patients admitted after cardiopulmonary resuscitation (CPR) and is considered to have a poor prognosis. The origin can be cortical and/or subcortical and this might be an important determinant for treatment options and prognosis. The aim of the study was to investigate whether acute PHM originates from cortical or subcortical structures, using somatosensory evoked potential (SEP) and electroencephalogram (EEG).</p> <p>Methods</p> <p>Patients with acute PHM (focal myoclonus or status myoclonus) within 72 hours after CPR were retrospectively selected from a multicenter cohort study. All patients were treated with hypothermia. Criteria for cortical origin of the myoclonus were: giant SEP potentials; or epileptic activity, status epilepticus, or generalized periodic discharges on the EEG (no back-averaging was used). Good outcome was defined as good recovery or moderate disability after 6 months.</p> <p>Results</p> <p>Acute PHM was reported in 79/391 patients (20%). SEPs were available in 51/79 patients and in 27 of them (53%) N20 potentials were present. Giant potentials were seen in 3 patients. EEGs were available in 36/79 patients with 23/36 (64%) patients fulfilling criteria for a cortical origin. Nine patients (12%) had a good outcome. A broad variety of drugs was used for treatment.</p> <p>Conclusions</p> <p>The results of this study show that acute PHM originates from subcortical, as well as cortical structures. Outcome of patients admitted after CPR who develop acute PHM in this cohort was better than previously reported in literature. The broad variety of drugs used for treatment shows the existing uncertainty about optimal treatment.</p

    Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility.

    Get PDF
    BACKGROUND: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. METHODS: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. RESULTS: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. CONCLUSIONS: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization

    Autosomal genetic variation is associated with DNA methylation in regions variably escaping X-chromosome inactivation

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Raw data were submitted to the European Genome-phenome Archive (EGA) under accession EGAS00001001077.X-chromosome inactivation (XCI), i.e., the inactivation of one of the female X chromosomes, restores equal expression of X-chromosomal genes between females and males. However, ~10% of genes show variable degrees of escape from XCI between females, although little is known about the causes of variable XCI. Using a discovery data-set of 1867 females and 1398 males and a replication sample of 3351 females, we show that genetic variation at three autosomal loci is associated with female-specific changes in X-chromosome methylation. Through cis-eQTL expression analysis, we map these loci to the genes SMCHD1/METTL4, TRIM6/HBG2, and ZSCAN9. Low-expression alleles of the loci are predominantly associated with mild hypomethylation of CpG islands near genes known to variably escape XCI, implicating the autosomal genes in variable XCI. Together, these results suggest a genetic basis for variable escape from XCI and highlight the potential of a population genomics approach to identify genes involved in XCI.This research was financially supported by several institutions: BBMRI-NL, a Research Infrastructure financed by the Dutch government (NWO, numbers 184.021.007 and 184.033.111); the UK Medical Research Council; Wellcome (www.wellcome.ac.uk; [grant number 102215/2/13/2 to ALSPAC]); the University of Bristol to ALSPAC; the UK Economic and Social Research Council (www.esrc.ac.uk; [ES/N000498/1] to CR); the UK Medical Research Council (www.mrc.ac.uk; grant numbers [MC_UU_12013/1, MC_UU_12013/2 to JLM, CR]); the Helmholtz Zentrum München – German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria; the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ; the Wellcome Trust, Medical Research Council, European Union (EU), and the National Institute for Health Research (NIHR)- funded BioResource, Clinical Research Facility, and Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London

    Advances in Quantitative Hepcidin Measurements by Time-of-Flight Mass Spectrometry

    Get PDF
    Assays for the detection of the iron regulatory hormone hepcidin in plasma or urine have not yet been widely available, whereas quantitative comparisons between hepcidin levels in these different matrices were thus far even impossible due to technical restrictions. To circumvent these limitations, we here describe several advances in time-of flight mass spectrometry (TOF MS), the most important of which concerned spiking of a synthetic hepcidin analogue as internal standard into serum and urine samples. This serves both as a control for experimental variation, such as recovery and matrix-dependent ionization and ion suppression, and at the same time allows value assignment to the measured hepcidin peak intensities. The assay improvements were clinically evaluated using samples from various patients groups and its relevance was further underscored by the significant correlation of serum hepcidin levels with serum iron indices in healthy individuals. Most importantly, this approach allowed kinetic studies as illustrated by the paired analyses of serum and urine samples, showing that more than 97% of the freely filtered serum hepcidin can be reabsorbed in the kidney. Thus, the here reported advances in TOF MS-based hepcidin measurements represent critical steps in the accurate quantification of hepcidin in various body fluids and pave the way for clinical studies on the kinetic behavior of hepcidin in both healthy and diseased states

    Cost-effectiveness of a stepped-care intervention to prevent major depression in patients with type 2 diabetes mellitus and/or coronary heart disease and subthreshold depression: design of a cluster-randomized controlled trial

    Get PDF
    Background: Co-morbid major depression is a significant problem among patients with type 2 diabetes mellitus and/or coronary heart disease and this negatively impacts quality of life. Subthreshold depression is the most important risk factor for the development of major depression. Given the highly significant association between depression and adverse health outcomes and the limited capacity for depression treatment in primary care, there is an urgent need for interventions that successfully prevent the transition from subthreshold depression into a major depressive disorder. Nurse led stepped-care is a promising way to accomplish this. The aim of this study is to evaluate the cost-effectiveness of a nurse-led indicated stepped-care program to prevent major depression among patients with type 2 diabetes mellitus and/or coronary heart disease in primary care who also have subthreshold depressive symptoms.Methods/design: An economic evaluation will be conducted alongside a cluster-randomized controlled trial in approximately thirty general practices in the Netherlands. Randomization takes place at the level of participating practice nurses. We aim to include 236 participants who will either receive a nurse-led indicated stepped-care program for depressive symptoms or care as usual. The stepped-care program consists of four sequential but flexible treatment steps: 1) watchful waiting, 2) guided self-help treatment, 3) problem solving treatment and 4) referral to the general practitioner. The primary clinical outcome measure is the cumulative incidence of major depressive disorder as measured with the Mini International Neuropsychiatric Interview. Secondary outcomes include severity of depressive symptoms, quality of life, anxiety and physical outcomes. Costs will be measured from a societal perspective and include health care utilization, medication and lost productivity costs. Measurements will be performed at baseline and 3, 6, 9 and 12 months.Discussion: The intervention being investigated is expected to prevent new cases of depression among people with type 2 diabetes mellitus and/or coronary heart disease and subthreshold depression, with subsequent beneficial effects on quality of life, clinical outcomes and health care costs. When proven cost-effective, the program provides a viable treatment option in the Dutch primary care system.Trial registration: Dutch Trial Register NTR3715. © 2013 van Dijk et al.; licensee BioMed Central Ltd

    Co-expressed immune and metabolic genes in visceral and subcutaneous adipose tissue from severely obese individuals are associated with plasma HDL and glucose levels: a microarray study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excessive accumulation of body fat, in particular in the visceral fat depot, is a major risk factor to develop a variety of diseases such as type 2 diabetes. The mechanisms underlying the increased risk of obese individuals to develop co-morbid diseases are largely unclear.</p> <p>We aimed to identify genes expressed in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) that are related to blood parameters involved in obesity co-morbidity, such as plasma lipid and glucose levels, and to compare gene expression between the fat depots.</p> <p>Methods</p> <p>Whole-transcriptome SAT and VAT gene expression levels were determined in 75 individuals with a BMI >35 kg/m<sup>2</sup>. Modules of co-expressed genes likely to be functionally related were identified and correlated with BMI, plasma levels of glucose, insulin, HbA<sub>1c</sub>, triglycerides, non-esterified fatty acids, ALAT, ASAT, C-reactive protein, and LDL- and HDL cholesterol.</p> <p>Results</p> <p>Of the approximately 70 modules identified in SAT and VAT, three SAT modules were inversely associated with plasma HDL-cholesterol levels, and a fourth module was inversely associated with both plasma glucose and plasma triglyceride levels (p < 5.33 × 10<sup>-5</sup>). These modules were markedly enriched in immune and metabolic genes. In VAT, one module was associated with both BMI and insulin, and another with plasma glucose (p < 4.64 × 10<sup>-5</sup>). This module was also enriched in inflammatory genes and showed a marked overlap in gene content with the SAT modules related to HDL. Several genes differentially expressed in SAT and VAT were identified.</p> <p>Conclusions</p> <p>In obese subjects, groups of co-expressed genes were identified that correlated with lipid and glucose metabolism parameters; they were enriched with immune genes. A number of genes were identified of which the expression in SAT correlated with plasma HDL cholesterol, while their expression in VAT correlated with plasma glucose. This underlines both the singular importance of these genes for lipid and glucose metabolism and the specific roles of these two fat depots in this respect.</p
    corecore