18 research outputs found
Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode
Interband tunnelling of carriers through a forbidden energy gap, known as Zener tunnelling, is a phenomenon of fundamental and technological interest. Its experimental observation in the Esaki p-n semiconductor diode has led to the first demonstration and exploitation of quantum tunnelling in a condensed matter system. Here we demonstrate a new type of Zener tunnelling that involves the resonant transmission of electrons through zero-dimensional (0D) states. In our devices, a narrow quantum well of the mid-infrared (MIR) alloy In(AsN) is placed in the intrinsic (i) layer of a p-i-n diode. The incorporation of nitrogen in the quantum well creates 0D states that are localized on nanometer lengthscales. These levels provide intermediate states that act as “stepping stones” for electrons tunnelling across the diode and give rise to a negative differential resistance (NDR) that is weakly dependent on temperature. These electron transport properties have potential for the development of nanometre-scale non-linear components for electronics and MIR photonics
Planar and van der Waals heterostructures for vertical tunnelling single electron transistors
Despite a rich choice of two-dimensional materials, which exists these days, heterostructures, both vertical (van der Waals) and in-plane, offer an unprecedented control over the properties and functionalities of the resulted structures. Thus, planar heterostructures allow p-n junctions between different two-dimensional semiconductors and graphene nanoribbons with well-defined edges; and vertical heterostructures resulted in the observation of superconductivity in purely carbon-based systems and realisation of vertical tunnelling transistors. Here we demonstrate simultaneous use of in-plane and van der Waals heterostructures to build vertical single electron tunnelling transistors. We grow graphene quantum dots inside the matrix of hexagonal boron nitride, which allows a dramatic reduction of the number of localised states along the perimeter of the quantum dots. The use of hexagonal boron nitride tunnel barriers as contacts to the graphene quantum dots make our transistors reproducible and not dependent on the localised states, opening even larger flexibility when designing future devices
Hexagonal boron nitride tunnel barriers grown on graphite by high temperature molecular beam epitaxy
We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate
Transport spectroscopy of non-equilibrium many-particle spin states in self-assembled quantum dots
Self-assembled quantum dots (QDs) are prominent candidates for solid-state quantum information processing. For these systems, great progress has been made in addressing spin states by optical means. In this study, we introduce an all-electrical measurement technique to prepare and detect non-equilibrium many-particle spin states in an ensemble of self-assembled QDs at liquid helium temperature. The excitation spectra of the one- (QD hydrogen), two- (QD helium) and three- (QD lithium) electron configuration are shown and compared with calculations using the exact diagonalization method. An exchange splitting of 10 meV between the excited triplet and singlet spin states is observed in the QD helium spectrum. These experiments are a starting point for an all-electrical control of electron spin states in self-assembled QDs above liquid helium temperature
Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3
Van der Waals heterostructures, which are composed of layered two-dimensional materials, offer a platform to investigate a diverse range of physical phenomena and could be of use in a variety of applications. Heterostructures containing two-dimensional ferromagnets, such as chromium triiodide (CrI3), have recently been reported, which could allow two-dimensional spintronic devices to be developed. Here we study tunnelling through thin ferromagnetic chromium tribromide (CrBr3) barriers that are sandwiched between graphene electrodes. In devices with non-magnetic barriers, conservation of momentum can be relaxed by phonon-assisted tunnelling or by tunnelling through localized states. In contrast, in the devices with ferromagnetic barriers, the major tunnelling mechanisms are the emission of magnons at low temperatures and the scattering of electrons on localized magnetic excitations at temperatures above the Curie temperature. Magnetoresistance in the graphene electrodes further suggests induced spin–orbit coupling and proximity exchange via the ferromagnetic barrier. Tunnelling with magnon emission offers the possibility of spin injection
Ethical aspects of clinical trials of blood clotting factors in children with hemophilia
The proportion of drugs for use in juvenile patients is much less than for the adult population. This is due both to the lack of specific drugs for a number of childhood diseases, and the need to conduct special clinical studies in different age groups to assess safety and efficacy parameters. When developing a program for clinical trials of an orphan drug, ethical aspects of the participation of underage patients are considered, taking into account the current international and Russian legislation. Obtaining the informed consent of a minor patient from one of the parents requires detailed prior information and the establishment of a trusting relationship before the participation of a minor patient in a clinical trial. The results of clinical and observational studies of orphan drugs on the example of moroctocog alfa in previously treated pediatric patients with hemophilia A in different age groups contribute to an increase in the arsenal of drugs for the treatment of orphan diseases in the pediatric population and determine the optimal conditions for the use of moroctocog alfa in different age groups.</jats:p
Resonant tunneling via donor X states in the AlAs barrier and binding energies of donors bound to X-XY and X-Z valleys
Magnetotransport in GaAs/AlAs/GaAs single-barrier heterostructures, incorporating unintentional donors in the barrier, is studied. Resonant tunneling is observed through the quasiconfined states in the AlAs layer which originate from the X-XY and X-Z conduction-band minima and through two distinct states of the donors bound to the X-XY and X-Z valleys. This allowes us to determine directly the binding energies of X-XY- and X-Z-related donors at the center of a 5-nm AlAs barrier as E-B(X-XY)approximate to70 meV and E-B(X-Z)approximate to50 meV, respectively. Furthermore, we observe an additional oscillatory fine structure of the donor resonances which we attribute to a difference in the binding energies of donors located at different position in the AlAs layer
