266 research outputs found

    Kill one or kill the many: Interplay between mitophagy and apoptosis

    Get PDF
    Mitochondria are key players of cellular metabolism, Ca2+ homeostasis, and apoptosis. The functionality of mitochondria is tightly regulated, and dysfunctional mitochondria are removed via mitophagy, a specialized form of autophagy that is compromised in hereditary forms of Parkinson's disease. Through mitophagy, cells are able to cope with mitochondrial stress until the damage becomes too great, which leads to the activation of proapoptotic BCL-2 family proteins located on the outer mitochondrial membrane. Active pro-apoptotic BCL-2 proteins facilitate the release of cytochrome c from the mitochondrial intermembrane space (IMS) into the cytosol, committing the cell to apoptosis by activating a cascade of cysteinyl-aspartate specific proteases (caspases). We are only beginning to understand how the choice between mitophagy and the activation of caspases is determined on the mitochondrial surface. Intriguingly in neurons, caspase activation also plays a non-apoptotic role in synaptic plasticity. Here we review the current knowledge on the interplay between mitophagy and caspase activation with a special focus on the central nervous system

    The pentameric nucleoplasmin fold is present in Drosophila FKBP39 and a large number of chromatin-related proteins.

    Get PDF
    Nucleoplasmin is a histone chaperone that consists of a pentameric N-terminal domain and an unstructured C-terminal tail. The pentameric core domain, a doughnut-like structure with a central pore, is only found in the nucleoplasmin family. Here, we report the first structure of a nucleoplasmin-like domain (NPL) from the unrelated Drosophila protein, FKBP39, and we present evidence that this protein associates with chromatin. Furthermore, we show that two other chromatin proteins, Arabidopsis thaliana histone deacetylase type 2 (HD2) and Saccharomyces cerevisiae Fpr4, share the NPL fold and form pentamers, or a dimer of pentamers in the case of HD2. Thus, we propose a new family of proteins that share the pentameric nucleoplasmin-like NPL domain and are found in protists, fungi, plants and animals.We are grateful to Gunter Stier for providing the vector; Michael Nilges, Oleg Fedorov, Benjamin Bardiaux, Stefanie Hartmann and Wolfgang Rieping for helpful discussions; and Daniel Nietlispach for NMR expertise. We thank Renato Paro for generously providing us with an anti-FKBP39 antibody. We would like to thank the Wellcome Trust for financial support (grant 082010/Z/07/Z). V.T.F. and E.D.L. acknowledge support from Engineering and Physical Sciences Research Council under grants GR/R99393/01 and EP/C015452/1 for the creation of the Deuteration Laboratory platform operating within the Grenoble Partnership for Structural Biology. V.T.F. also acknowledges support from the European Union under contract RII3-CT-2003-505925. J.B.A. acknowledges the provision of a postdoctoral fellowship held at Keele University. M.R.P. and D.M.G. were supported by the Medical Research Council and Cancer Research UK grants to D.M.G. A.A.W. is a recipient of a Wellcome Trust Fellowship092441/Z/10/Z. J.D. and M.D. were supported by the Harmonia 5 Grant 2013/10/M/NZ2/00298 from the Polish National Science Center. The authors would like to thank the Institut Laue-Langevin (ILL), the European Synchrotron Radiation Facility (ESRF) and the European Molecular Biology Laboratory Hamburg outstation (EMBL-HH) for the provision of beamtime and access to the experimental facilities of D22, ID14eh3 and X33 respectively. We would also like to thank the local contacts at all the facilities for providing assistance in using the beam lines.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.jmb.2015.03.01

    The Pentameric Nucleoplasmin Fold Is Present in Drosophila FKBP39 and a Large Number of Chromatin-Related Proteins

    Get PDF
    Nucleoplasmin is a histone chaperone that consists of a pentameric N-terminal domain and an unstructured C-terminal tail. The pentameric core domain, a doughnut-like structure with a central pore, is only found in the nucleoplasmin family. Here, we report the first structure of a nucleoplasmin-like domain (NPL) from the unrelated Drosophila protein, FKBP39, and we present evidence that this protein associates with chromatin. Furthermore, we show that two other chromatin proteins, Arabidopsis thaliana histone deacetylase type 2 (HD2) and Saccharomyces cerevisiae Fpr4, share the NPL fold and form pentamers, or a dimer of pentamers in the case of HD2. Thus, we propose a new family of proteins that share the pentameric nucleoplasmin-like NPL domain and are found in protists, fungi, plants and animals

    Quality of life and neck pain in nurses

    Full text link
    Objectives: To investigate the association between neck pain and psychological stress in nurses. Material and Methods: Nurses from the Avon Orthopaedic Centre completed 2 questionnaires: the Short Form-36 (SF-36) and 1 exploring neck pain and associated psychological stress. Results: Thirty four nurses entered the study (68% response). Twelve (35.3%) had current neck pain, 13 (38.2%) reported neck pain within the past year and 9 (26.5%) had no neck pain. Subjects with current neck pain had significantly lower mental health (47.1 vs. 70.4; p = 0.002), physical health (60.8 vs. 76.8; p = 0.010) and overall SF-36 scores (56.8 vs. 74.9; p = 0.003). Five (41.7%) subjects with current neck pain and 5 (38.5%) subjects with neck pain in the previous year attributed it to psychological stress. Conclusions: Over 1/3 of nurses have symptomatic neck pain and significantly lower mental and physical health scores. Managing psychological stress may reduce neck pain, leading to improved quality of life for nurses, financial benefits for the NHS, and improved patient care

    Severe leukocytoclastic vasculitis secondary to the use of a naproxen and requiring amputation: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Leukocytoclastic vasculitis (also known as hypersensitivity vasculitis and cutaneous necrotizing vasculitis) can present with various manifestations, which often delays the diagnosis and treatment. In order to show the importance of the early recognition of leukocytoclastic vasculitis, we present a case which occurred secondary to the use of a common pharmaceutical, naproxen. We were unable to find a case of leukocytoclastic vasculitis secondary to naproxen in the literature.</p> <p>Case presentation</p> <p>We present the case of a 33-year-old African American woman with below the knee and bilateral digital gangrene from hypersensitivity vasculitis secondary to the non-steroidal anti-inflammatory medication naproxen.</p> <p>Conclusion</p> <p>This is an original case report focusing on the rheumatologic management of leukocytoclastic vasculitis. However, other specialties, such as internal medicine, dermatology, infectious disease, general surgery and pathology, can gain valuable information by reviewing this case report. Reporting a case of leukocytoclastic vasculitis secondary to treatment with naproxen will advance our understanding of this disease etiology by adding yet another non-steroidal anti-inflammatory drug to the list of potential causes of leukocytoclastic vasculitis.</p

    ZMYND10 functions in a chaperone relay during axonemal dynein assembly

    Get PDF
    Molecular chaperones promote the folding and macromolecular assembly of a diverse set of ‘client’ proteins. How ubiquitous chaperone machineries direct their activities towards specific sets of substrates is unclear. Through the use of mouse genetics, imaging and quantitative proteomics we uncover that ZMYND10 is a novel co-chaperone that confers specificity for the FKBP8-HSP90 chaperone complex towards axonemal dynein clients required for cilia motility. Loss of ZMYND10 perturbs the chaperoning of axonemal dynein heavy chains, triggering broader degradation of dynein motor subunits. We show that pharmacological inhibition of FKBP8 phenocopies dynein motor instability associated with the loss of ZMYND10 in airway cells and that human disease-causing variants of ZMYND10 disrupt its ability to act as an FKBP8-HSP90 co-chaperone. Our study indicates that primary ciliary dyskinesia (PCD), caused by mutations in dynein assembly factors disrupting cytoplasmic pre-assembly of axonemal dynein motors, should be considered a cell-type specific protein-misfolding disease

    Perdeuteration of cholesterol for neutron scattering applications using recombinant Pichia pastoris

    Get PDF
    Deuteration of biomolecules has a great impact on both quality and scope of neutron scattering experiments. Cholesterol is a major component of mammalian cells, where it plays a critical role in membrane permeability, rigidity and dynamics, and contributes to specific membrane structures such as lipid rafts. Cholesterol is the main cargo in low and high-density lipoprotein complexes (i.e. LDL, HDL) and is directly implicated in several pathogenic conditions such as coronary artery disease which leads to 17 million deaths annually. Neutron scattering studies on membranes or lipid-protein complexes exploiting contrast variation have been limited by the lack of availability of fully deuterated biomolecules and especially perdeuterated cholesterol. The availability of perdeuterated cholesterol provides a unique way of probing the structural and dynamical properties of the lipoprotein complexes that underly many of these disease conditions. Here we describe a procedure for in vivo production of perdeuterated recombinant cholesterol in lipid-engineered Pichia pastoris. Using flask and fed-batch fermenter cultures in deuterated minimal medium perdeuteration of the purified cholesterol was verified by mass spectrometry and its use in a neutron scattering study was demonstrated using neutron reflectometry

    A Pilot study of the Sharing Risk Information Tool (ShaRIT) for Families with Hereditary Breast and Ovarian Cancer Syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Individuals who carry deleterious BRCA mutations face significantly elevated risks of breast, ovarian, and other cancers. These individuals are also responsible for informing relatives of their increased risk for carrying the family BRCA mutation. Few interventions have been developed to facilitate this family communication process.</p> <p>Methods</p> <p>We developed the Sharing Risk Information Tool (ShaRIT), a personalized educational intervention, to support BRCA carriers as they discuss BRCA positive results and their implications with relatives. We conducted a pilot study of 19 BRCA carriers identified through the University of California San Francisco Cancer Risk Program. Our study had two aims: 1) to assess the feasibility and acceptability of ShaRIT, and 2) describe characteristics associated with increased family communication and BRCA testing. Participants in our study were divided into two groups: those who had not received ShaRIT as part of their genetic counseling protocol (control group, n = 10) and those who received ShaRIT (n = 9).</p> <p>Results</p> <p>All 9 women who received ShaRIT reported that it was a useful resource. Characteristics associated with increased sharing and testing included: female gender, degree of relationship, and frequency of communication. Increased pedigree knowledge showed a trend toward higher rates of sharing.</p> <p>Conclusions</p> <p>Both participants and genetic counselors considered ShaRIT a well-received, comprehensive tool for disseminating individual risk information and clinical care guidelines to Hereditary Breast and Ovarian Cancer Syndrome families. Because of this, ShaRIT has been incorporated as standard of care at our institution. In the future we hope to evaluate the effects of ShaRIT on family communication and family testing in larger populations of BRCA positive families.</p

    Acute wound management: revisiting the approach to assessment, irrigation, and closure considerations

    Get PDF
    Abstract Background As millions of emergency department (ED) visits each year include wound care, emergency care providers must remain experts in acute wound management. The variety of acute wounds presenting to the ED challenge the physician to select the most appropriate management to facilitate healing. A complete wound history along with anatomic and specific medical considerations for each patient provides the basis of decision making for wound management. It is essential to apply an evidence‐based approach and consider each wound individually in order to create the optimal conditions for wound healing. Aims A comprehensive evidence‐based approach to acute wound management is an essential skill set for any emergency physician or acute care practitioner. This review provides an overview of current evidence and addresses frequent pitfalls. Methods A systematic review of the literature for acute wound management was performed. Results A structured MEDLINE search was performed regarding acute wound management including established wound care guidelines. The data obtained provided the framework for evidence‐based recommendations and current best practices for wound care. Conclusion Acute wound management varies based on the wound location and characteristics. No single approach can be applied to all wounds; however, a systematic approach to acute wound care integrated with current best practices provides the framework for exceptional wound management
    corecore