9,340 research outputs found
Teardown analysis for detecting shelf-life degradation
Analysis is guideline in examining component materials, analytically determining physical properties and chemical compositions, and developing control data necessary for ascertaining effects of environments and their influence on deterioration and degradation mechanisms
Minimum Wage and Compliance in a Model of Search On-the-Job
minimum wages, compliance, job search, wage growth
Transaction services, inflation, and welfare
This paper is motivated by empirical observations on the comovements of currency velocity, inflation, and the relative size of the credit services sector. We document these comovements and incorporate into a monetary growth model a credit services sector that provides services that help people economize on money. Our model makes two new contributions. First, we show that direct evidence on the appropriately defined credit service sector for the United States is consistent with the welfare cost measured using an estimated money demand schedule. Second, we provide welfare cost of inflation estimates that have some new features.Inflation (Finance) ; Welfare
Optical control of competing exchange interactions and coherent spin-charge coupling in two-orbital Mott insulators
In order to have a better understanding of ultrafast electrical control of
exchange interactions in multi-orbital systems, we study a two-orbital Hubbard
model at half filling under the action of a time-periodic electric field. Using
suitable projection operators and a generalized time-dependent canonical
transformation, we derive an effective Hamiltonian which describes two
different regimes. First, for a wide range of non-resonant frequencies, we find
a change of the bilinear Heisenberg exchange that is
analogous to the single-orbital case. Moreover we demonstrate that also the
additional biquadratic exchange interaction can be enhanced,
reduced and even change sign depending on the electric field. Second, for
special driving frequencies, we demonstrate a novel spin-charge coupling
phenomenon enabling coherent transfer between spin and charge degrees of
freedom of doubly ionized states. These results are confirmed by an exact
time-evolution of the full two-orbital Mott-Hubbard Hamiltonian.Comment: 3 pages, 6 figure
Physiological incongruity of the humero-ulnar joint
Investigations into the distribution of subchondral bone density in the human elbow have suggested that the geometry of the trochlear notch deviates from a perfect fit with the trochlea, and that the load is transmitted ventrally and dorsally rather than through the centre of the humero-ulnar joint. We therefore decided to make a quantitative assessment of the degree of incongruity between the two components in 15 human specimens (age distribution 60 to 93 years) with different types of joint surface. Polyether casts of the joint cavity were prepared under loads of 10,40,160 and 640 N. The thickness of the casts was then measured at 50 predetermined points, and an area distribution of the width of the joint space represented in a two-dimensional template of the trochlear notch. The reproducibility of this procedure was tested by image analysis. At a load of 10 N, only a narrow space was present ventrally and dorsally in the joint, but in the depths of the trochlear notch a width of 0.5 to 1 mm was recorded in the centre, and up to 3 mm at its medial and lateral edges. Specimens with continuous articular cartilage showed a lower degree of incongruity than those with a divided articular surface. As the load was increased to 640 N, however, the original incongruity between the articular surfaces disappeared almost completely. The joint surfaces became more congruous, probably because of the viscoelastic properties of the articular cartilage and the subchondral bone, and the contact areas merged in the centre of the joint. It is suggested that this physiological incongruity brings about an optimal distribution of stress over the articular surface during the transmission of the load, and it may lead to better nourishment of the articular cartilage by providing intermittent mechanical stimulation and circulation of the synovial fluid
Präzision MRT-basierter Gelenkflächen- und Knorpeldickenanalysen im Kniegelenk bei Verwendung einer schnellen Wasseranregungs-Sequenz und eines semiautomatischen Segmentierungs-Algorithmus
The aim of this study was to analyse the precision of three-dimensional joint surface and cartilage thickness measurements in the knee, using a fast, high-resolution water-excitation sequence and a semiautomated segmentation algorithm. The knee joint of 8 healthy volunteers, aged 22 to 29 years, were examined at a resolution of 1.5 mm x 0.31 mm x 0.31 mm, with four sagittal data sets being acquired after repositioning the joint. After semiautomated segmentation with a B-spline Snake algorithm and 3D reconstruction of the patellar, femoral and tibial cartilages, the joint surface areas (triangulation), cartilage volume, and mean and maximum thickness (Euclidean distance transformation) were analysed, independently of the orientation of the sections. The precision (CV%) for the surface areas was 2.1 to 6.6%. The mean cartilage thickness and cartilage volume showed coefficients of 1.9 to 3.5% (except for the femoral condyles), the value for the medial femoral condyle being 9.1%, and for the lateral condyle 6.5%. For maximum thickness, coefficients of between 2.6 and 5.9% were found. In the present study we investigate for the first time the precision of MRI-based joint surface area measurements in the knee, and of cartilage thickness analyses in the femur. Using a selective water-excitation sequence, the acquisition time can be reduced by more than 50%. The poorer precision in the femoral condyles can be attributed to partial Volume effects that occur at the edges of the joint surfaces with a sagittal image protocol. Since MRI is non-invasive, it is highly suitable for examination of healthy subjects (generation of individual finite element models, analysis of functional adaptation to mechanical stimulation, measurement of cartilage deformation in vivo) and as a diagnostic tool for follow-up, indication for therapy, and objective evaluation of new therapeutic agents in osteoarthritis
From quantum pulse gate to quantum pulse shaper -- enigneered frequency conversion in nonlinear optical waveguides
Full control over the spatio-temporal structure of quantum states of light is
an important goal in quantum optics, to generate for instance single-mode
quantum pulses or to encode information on multiple modes, enhancing channel
capacities. Quantum light pulses feature an inherent, rich spectral
broadband-mode structure. In recent years, exploring the use of integrated
optics as well as source-engineering has led to a deep understanding of the
pulse-mode structure of guided quantum states of light. In addition, several
groups have started to investigate the manipulation of quantum states by means
of single-photon frequency conversion. In this paper we explore new routes
towards complete control of the inherent pulse-modes of ultrafast pulsed
quantum states by employing specifically designed nonlinear waveguides with
adapted dispersion properties. Starting from our recently proposed quantum
pulse gate (QPG) we further generalize the concept of spatio-spectral
engineering for arbitrary \chitwo-based quantum processes. We analyse the
sum-frequency generation based QPG and introduce the difference-frequency
generation based quantum pulse shaper (QPS). Together, these versatile and
robust integrated optics devices allow for arbitrary manipulations of the
pulse-mode structure of ultrafast pulsed quantum states. The QPG can be
utilized to select an arbitrary pulse mode from a multimode input state,
whereas the QPS enables the generation of specific pulse modes from an input
wavepacket with Gaussian-shaped spectrum.Comment: 21 pages, 9 figure
Electron Doping of Cuprates via Interfaces with Manganites
The electron doping of undoped high- cuprates via the transfer of charge
from manganites (or other oxides) using heterostructure geometries is here
theoretically discussed. This possibility is mainly addressed via a detailed
analysis of photoemission and diffusion voltage experiments, which locate the
Fermi level of manganites above the bottom of the upper Hubbard band of some
cuprate parent compounds. A diagram with the relative location of Fermi levels
and gaps for several oxides is presented. The procedure discussed here is
generic, allowing for the qualitative prediction of the charge flow direction
at several oxide interfaces. The addition of electrons to antiferromagnetic Cu
oxides may lead to a superconducting state at the interface with minimal
quenched disorder. Model calculations using static and dynamical mean-field
theory, supplemented by a Poisson equation formalism to address charge
redistribution at the interface, support this view. The magnetic state of the
manganites could be antiferromagnetic or ferromagnetic. The former is better to
induce superconductivity than the latter, since the spin-polarized charge
transfer will be detrimental to singlet superconductivity. It is concluded that
in spite of the robust Hubbard gaps, the electron doping of undoped cuprates at
interfaces appears possible, and its realization may open an exciting area of
research in oxide heterostructures.Comment: 12 pages, 9 figure
- …