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Abstract. Investigations into the distribution of subchon- 
dral bone density in the human elbow have suggested 
that the geometry of the trochlear notch deviates from a 
perfect fit with the trochlea, and that the load is transmit- 
ted ventrally and dorsally rather than through the centre 
of the humero-ulnar joint. We therefore decided to make 
a quantitative assessment of the degree of incongruity 
between the two components in 15 human specimens 
(age distribution 60 to 93 years) with different types of 
joint surface. Polyether casts of the joint cavity were pre- 
pared under loads of 10, 40, 160 and 640 N. The thickness 
of the casts was then measured at 50 predetermined 
points, and an area distribution of the width of the joint 
space represented in a two-dimensional template of the 
trochlear notch. The reproducibility of this procedure 
was tested by image analysis. At a load of 10 N, only a 
narrow space was present ventrally and dorsally in the 
joint, but in the depths of the trochlear notch a width of 
0.5 to 1 mm was recorded in the centre, and up to 3 mm 
at its medial and lateral edges. Specimens with continu- 
ous articular cartilage showed a lower degree of incon- 
gruity than those with a divided articular surface. As the 
load was increased to 640 N, however, the original incon- 
gruity between the articular surfaces disappeared almost 
completely. The joint surfaces became more congruous, 
probably because of the viscoelastic properties of the ar- 
ticular cartilage and the subchondral bone, and the con- 
tact areas merged in the centre of the joint. It is suggested 
that this physiological incongruity brings about an opti- 
mal distribution of stress over the articular surface dur- 
ing the transmission of the load, and it may lead to better 
nourishment of the articular cartilage by providing inter- 
mittent mechanical stimulation and circulation of the 
synovial fluid. 
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Introduction 

Recent CT osteoabsorptiometric research (CT-OAM) on 
living subjects has made it clear that, at least in younger 
people, there is on average a greater stress acting at the 
periphery of the articular surfaces than at their centre. 
This applies especially to certain larger joints such as the 
hip, the shoulder and the ankle (Mfiller-Gerbl et al. 1992, 
1993; Mfiller-Gerbl and Putz 1993). Tillmann (1971, 
1978) was the first to show that in cases where the articu- 
lar surface of the trochlear notch is divided (this being the 
most common type in older individuals), ventral and 
dorsal maxima of subchondral bone density can be de- 
monstrated. After investigating human elbow joints by 
CT osteoabsorptiometry (Eckstein et al. 1993a) we were 
able to confirm that in most cases a bicentric pattern of 
subchondral mineralization can be found in the ulna, the 
mineralization under the ventral and dorsal aspect of the 
joint surface exceeding that under the joint centre by up 
to 300 Hounsfield units. This distribution of the mineral 
salt content in the subchondral bone is thought to reflect 
the long-term stress acting on the joint surfaces (Pauwels 
1955, 1960, 1963; Kummer 1962; Tillmann 1971, 1978; 
Carter 1984; Mtiller-Gerbl et al. 1989, 1992; Carter et al. 
1991). It can be concluded from this that, on average, 
more load is transmitted through the dorsal and ventral 
regions of the articular surface than in the depths of the 
trochlear notch. Such a stress distribution can most 
plausibly be explained by the fact that, in all sagittal 
sections through the joint, the trochlear notch is deeper 
than would be necessary for an exact fit with the trochlea 
of the humerus (Tillmann 1971, 1978; Oberl/inder et al. 
1984). 

The concept of incongruity in human joints is certain- 
ly not new. Walmsley (1928) described the incongruous 
shape of the hip joint over 60 years ago, and since then 
many investigators, using various different methods of 
approach, have confirmed it (Bullough et al. 1968, 1993; 
Greenwald and O'Connor 1971 ; Greenwald and Haynes 
1972; Goodfellow and Mitsou 1977; Rushfeldt and 
Mann 1979; Afoke et al. 1980; Miyanga et al. 1984; 



450 

Mi i l l e r -Gerb l  et al. 1992, 1993). This  k ind  o f  incongru i ty  
has also been obse rved  in the  h u m e r o - u l n a r  j o i n t  o f  
younge r  peop le  ( G o o d f e l l o w  and  Bul lough  1967; Bull- 
ough  et al. 1973; Bul lough  and  J a g a n n a t h  1983). Never -  
theless, these repor t s  have  been  l imi ted  to qua l i t a t ive  
c o m m e n t s  on  sagi t ta l  sections,  and  few examples  have 
been given. Our  objec t  was therefore  to assess the degree 
o f  i ncongru i ty  quan t i t a t ive ly  in a la rger  sample  o f  h u m a n  
h u m e r o - u l n a r  jo in t s  and  to invest igate  the dependence  o f  
this incongru i ty  u p o n  the j o in t  load ing .  

Materials and methods 

We examined 15 dissecting-room specimens (8 female and 7 male), 
with an age range of 60 to 93 (mean 78) years. These were allocated 
to groups in accordance with the morphological appearance of the 
cartilage covering the trochlear notch as described by Tillmann 
(1978) and Oberl/inder et al. (1984). Eight specimens showed a 
complete division of the cartilaginous joint surfaces of the ulna by 
a transverse bony furrow (Fig. la, group a). In four, the division 
appeared only on the medial side, with the cartilage continuing right 
across the surface laterally (Fig. lb, group b). In three specimens 
the cartilaginous surface was uninterrupted throughout (Fig. lc, 
group c). Specimens with cartilaginous damage visible to the naked 
eye were discarded from the investigation, and in no case was there 
any evidence of pathological change near the joint or of systemic 
disease of the locomotor apparatus. 

The specimens were fixed in 3.7% formalin and, after being 
opened, kept in the same solution for 6 months. The head of the 
radius, the surrounding soft tissues, the joint capsule, the collateral 
ligaments and the meniscoid folds were resected. 

For the mechanical investigation, each humeral shaft was fixed 
in the mounting of a Zwick material-testing machine so that the 
long axis of the humeral condyles was at right angles to the testing 
table (Fig. 2). In order to avoid angulation of the joint surfaces the 
ulna was fixed to the latter, while keeping its articular surface in 
close contact with that of the humerus. The coronoid process and 
olecranon were situated at the same distance from the top of the 
table. Owing to the anterior rotation of the condyle, and the 30 ~ 
posterior rotation of the trochlear notch relative to the ulnar shaft, 
this corresponded to 90 ~ flexion at the elbow joint. In this way the 
resultant force was, following Morrey's (1985) calculations, 
brought to lie in the centre of the trochlear notch. The joint surfaces 
were separated by lifting the humeral component, and then sprayed 
with a special liquid (Wacker) to prevent the cartilage sticking to 
the cast. The cast was made from polyether (ESPE), which allows 
3 min for modelling and takes a further 7 rain to dry. The casting 
mixture was prepared and placed on the ulnar surface of the joint 

Fig. 1. Morphology of the cartilage covering of the trochlear notch 
according to Tillmann (1978) and Oberl/inder et al. (1984). Type a: 
complete division of the articular surface (about 65% of all cases). 
Type b: surface divided medially, continuous laterally (about 30 % 
of all cases). Type c: surface continuous both medially and laterally 
(about 5% of all cases) 

Fig. 2. Mounting of the specimens in the material-testing machine 

within 1 min. The required load was applied within a further minute 
and kept constant until the material had set hard. Casts of each joint 
were prepared under loads of 10, 40, 160 and 640 Newtons, the 
cartilage being kept moist throughout the whole procedure with 
physiological saline. 

The thickness of the casts was then measured at 50 predeter- 
mined points with a Mitutoyo rapid measuring device (spherical 
distance sensor, standardized to a pressure of 30 g) and the mea- 
surements were conveyed to a joint template (Figs. 3a, 4a, 5a). By 
means of a computer program (Gnuplot) the surface distribution 
of the thickness of the cast (or width of the joint space) was recon- 
structed in terms of ten thickness intervals (< 0.3 mm to > 2.7 mm). 
The mean distribution of the width of the joint space at loads of 
10 N and 640 N was calculated for the groups a, b and c, the 
difference between the two distributions representing the degree of 
deformation of the tissue under increasing load. 

In order to be certain that the method of casting, the measure- 
ments, and the surface reconstruction were reproducible, six casts 
of the same joint were prepared under a load of 40 N. From these 
six casts, a surface reconstruction in ten intervals was obtained by 
the method just described, and the distribution of cast thickness 
compared by means of image analysis (Vidas Plus Kontron). The 
measure of agreement between the six distribution patterns was 
obtained at 250 points in the joint template. 

Results 

M e a s u r e m e n t  o f  the casts  o f  the specimens  in g roup  a 
(d ivided a r t i cu la r  surface)  showed that ,  under  a l oad  o f  
10 N,  the wid th  o f  the j o i n t  space at  the vent ra l  and  
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Fig. 3. a Joint surface template of 
trochlear notch. M Average 
width of joint space in eight spe- 
cimens from group a (divided 
joint surface) under 10 N (b) and 
under 640 N. (e). d Difference in 
width of joint space between b 
and e showing the amount of de- 
formation of the tissues, e-h 
Width of the joint space in a sin- 
gle specimen from group a under 
10 N (e) under 40 N (f) under 
160 N (g) and under 640 N (h) 
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Fig. 4. a Joint surface template of 
trochlear notch. M Average 
width of joint space in 4 spe- 
cimens from group b (medial sur- 
face divided, lateral continous) 
under 10 N (b) and under 640 N 
(e). d Difference in width of joint 
space between b and e showing 
the amount of deformation of the 
tissues, e-h Width of the joint 
space in a single specimen from 
group b under 10 N (e), under 
40 N (t), under 160 N (g) and un- 
der 640 N (h) 
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Fig. g. a Joint surface template of 
trochlear notch, b-d Average 
width of joint space in three spe- 
cimens from group c (both medial 
and lateral surfaces continous) 
under 10 N (b) and under 640 N 
(e). d Difference in width of joint 
space between b and e showing 
the amount of deformation of the 
tissues, e-h Width of the joint 
space in a single specimen from 
group c under 10 N (e), under 
40 N (t), under 160 N (g) and un- 
der 640 N (h) 

Table 1. Percentage of points (out of 250) in the template exhibiting the same thickness interval of the cast, and those showing a difference 
of one and more than one of the ten intervals used (taken between pairs from six casts obtained from an identical joint: C1-C6 = cast 14) 

C1/C2 C2/C3 C3/C4 C4/C5 C5/C6 C6/C1 Mean 

Percentage of pixels in the same thickness interval 83.4% 79.6% 84.3 86.6% 79.1% 82.9% 82.7% 
Percentage of pixels with a difference of 1 interval 9.5% 10.0% 6.2% 8.6% 8.3% 8.1% 8.4% 
Percentage of pixels with a difference 7.1% 10.4% 9.5% 4.8% 12.6% 9.0% 8.9% 
of more than 1 interval (> 0.3 mm) 

dorsal parts of  the surface was everywhere less than 
0.3 m m  (Fig. 3b). In the deepest part  of  the trochlear 
notch, the space had a mean width of  1 mm,  increasing 
to 2.3 m m  medially and 2.6 m m  laterally. At a load of  
640 N (Fig. 3c), an effective space in the notch was only 
found at the medial (1 .4mm) and the lateral edge 
(0.9 mm), the two contact areas merging in the centre. 
The reduction in the width of  the joint space with the 
load increasing f rom 10 to 640 N (Fig. 3d) could most  
clearly be seen in the depths of  the notch, amounting to 
1 m m  medially and in the centre, and 1.7 m m  laterally. 
Figure 3e-h shows the thickness of  the casts f rom a single 
specimen in this group under loads of  10, 40, 160 and 
640 N. 

Specimens with a medial division only (group b) 
showed a different distribution pattern of  cast thickness, 
insofar as the width of  the joint space in the lateral region 
of  the deepest par t  of  the notch was on average less than 
0.3 m m  (Fig. 4b). Values up to 0.4 m m  were found in the 

centre, and of up to 3 m m  laterally. At a load of 640 N, 
the contact areas were continuous laterally and in the 
centre, whereas a width of  up to 2.3 m m  remained on the 
medial side (Fig. 4c). Reduction of  the joint space took 
place particularly in the medial par t  of  the depths of  the 
trochlear notch, reaching 1.2 m m  in this region (Fig. 4d). 
Figure 4e h shows the thickness of  each cast taken f rom 
a specimen in this group under loads of  10, 40, 160 and 
640 N. 

In specimens with a continuous articular surface both 
medially and laterally (group c) the width of  the joint 
space in the depths of  the trochlear notch reached 
0.5 m m  in the centre, up to 1 m m  laterally and 2.7 m m  
medially (Fig. 5b). Under  a load of  640 N, surface con- 
tact was complete laterally and in the centre, but medially 
the joint space remained up to 1.7 m m  wide (Fig. 5c). 
Reduction of  the space reached 1 m m  in the depths of  the 
notch laterally, 0.5 m m  in the centre and up to 1,5 m m  
medially (Fig. 5d). Figure 5e-h shows the thickness of  the 
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casts taken from a single specimen of this group as a 
function of the load (10, 40, 160, 640 N). 

The extent to which the method can achieve reproduc- 
ible results emerged from measurements made of six casts 
from the same joint. The surface distribution of the cast 
thickness reached complete agreement with the thickness 
-interval at 82.7% of the 250 points compared; 8.4% of 
the pixels differed by one, and 8.9% by more than one of 
the ten thickness intervals employed (Table 1). 

Discussion 

Methodology 

The repeated preparation of casts from one specimen and 
their measurements makes it clear that both the deter- 
mination of the load-dependent width of the joint space 
and its surface reconstruction in the template are suf- 
ficiently reproducible for quantitative evaluation of the 
measurements to be undertaken. The extent to which 
these results can be accepted as revealing the actual 
physiological situation is, however, subject to certain 
limitations. For one thing, the thickness of the cartilage 
has an important influence on the congruity between the 
components of the joint. Kurrat (1977) claims that the 
thickness of the cartilage is not essentially altered by 
formalin fixation, but the possibility that, in spite of the 
continuous moistening of the articular surfaces, a slight 
degree of shrinkage of the cartilage during the experi- 
ment may be brought about cannot be entirely excluded. 
This would mean, however, that the incongruity would 
be even more pronounced in the unifixed specimen than 
our measurements suggest. In other words, the geometri- 
cal incongruity between the humero-ulnar joint surfaces 
which has come to light during this investigation cannot 
on these grounds be attributed to an artefact. If anything, 
the values represent an underestimation of the true fig- 
u r e s .  

A further effect which may increase the incongruity 
under in vivo conditions was described by Oberlfinder et 
al. (1984). Considering the results of certain animal ex- 
periments reported by Ingelmark and Ekholm (1948), 
they suggested that movement at the elbow joint may 
lead to a transient functional swelling of the cartilage. 
They argue convincingly that a 5 % increase in the thick- 
ness of the cartilage could cause an increase in the in- 
congruity between the joint surfaces sufficient to lift the 
trochlea 1.3 mm out of the trochlear notch. This again 
supports the suggestion already made that, under phys- 
iological conditions, the degree of incongruity may be 
quantitatively more pronounced. The effect of a func- 
tional swelling of the cartilage may therefore increase the 
primary incongruity between the joint surfaces of the 
humero-ulnar joint. 

It also seems possible that contraction of the triceps 
during daily activity exerts a pull on the olecranon and 
tends to prevent a decrease in incongruity by limiting the 
distortion of the bony elements. This is an effect which 
our experimental method did not take into account. 

It is difficult to assess the effect of formalin fixation 
and the replacement of the synovial fluid with casting 

material on the viscoelastic properties of the articular 
cartilage. This, according to Mow et al. (1984), depends 
essentially on the interaction between the fluid elements 
and the solid cartilaginous matrix. Up to now, however, 
there is no work dealing with the observed experimental 
changes in these terms. However, results obtained from 
work on the unembalmed human hip joint (Miyanaga et 
al. 1984) clearly show that reduction in the primary 
incongruity between the joint components with increas- 
ing load also takes place without formalin fixation. Ac- 
cording to these authors, the viscoelastic deformation of 
the components of the joint is not only accounted for by 
the elastic properties of the articular cartilage, but also 
by those of the subchondral bone. This is in agreement 
with results reported by Radin and Paul (1970) and 
Radin et al. (1970) which emphasize the importance of 
the subchondral bone for the transmission of load 
through a joint. It can be assumed that the mechanical 
characteristics of the bony tissue are not, so far as our 
investigation is concerned, greatly influenced by formalin 
fixation. We therefore think that it is perfectly possible 
to derive characteristic principles of pressure trans- 
mission through the humero-ulnar joint from these ex- 
periments. 

Results 

Our findings extend the observation made by Bullough 
et al. (1973) and Bullough and Jagannath (1983) that a 
sagittal section through the ulnar is slightly elliptical 
rather than circular, so that the depth of the trochlear 
notch exceeds the radius of the trochlea. The surface 
reconstruction of these results makes it clear that the 
degree of incongruity recorded is dependent upon the 
position of a sagittal section through the joint, and in 
general increases from the centre towards the medial and 
lateral edges. 

Our results refute those of Shiba et al. (1988), who 
worked out the geometry of the humero-ulnar joint by 
image-analysing photographs of thin sagittal sections. 
These authors certainly admitted the existence of dif- 
ferent radii of curvature between the articular surfaces of 
the olecranon and coronoid process, but, unlike us, came 
to the conclusion that there is a certain "sloppiness" 
between humerus and ulna which must depend upon the 
greater diameter of the trochlear notch in comparison 
with the trochlea itself. It seems to us probable that an 
inbuilt methodological error - perhaps the drying up of 
the articular cartilage or some distortion in the image 
analysis of the photographs - is responsible for the 
discrepancy between our results and theirs. 

Our findings are, however, supported by the results of 
contact-area studies in the same joint (Goodfellow and 
Bullough 1967; Walker 1977; Goel et al. 1982), in which 
a light load produced surface contact at the periphery 
and a contact-free zone in the depths of the trochlear 
notch. The central merging of the contact areas with 
higher loading (Stormont et al. 1985; Eckstein et al. 
1993b) agrees with our observation of a secondary reduc- 
tion in the incongruity between the joint surfaces when 
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the load is increased. According to Bullough (1981) and 
Miyanaga et al. (1984), this can be accounted for by the 
viscoelastic deformability of the cartilage and the sub- 
chondral bone. 

The suggestion put forward by Tillmann (1971, 1978), 
that there is a connection between the incongruity and 
both the extent of the cartilage covering in the trochlear 
notch and the distribution of subchondral bone mi- 
neralization, is supported by the present investigation. 
The incongruity is more marked in individuals with di- 
vided joint surfaces than in those with a continuous layer 
of cartilage. In cases where the medial part of the joint 
is divided and the lateral continuous, it can even be seen 
that the incongruity of the medial part of the joint ex- 
ceeds that of the lateral. It therefore follows that the 
incongruity, by determining the mechanical environ- 
ment, seems to bring about adaptive biological changes 
in the articular cartilage and the subchondral bone, 
which may be interpreted in terms of causal histogenesis 
(Pauwels 1960; Kummer 1962; Tillmann 1978). The in- 
congruity between the components of the joint may limit 
the degree of mechanical deformation of the cartilage in 
the depths of the trochlear notch to such an extent that 
it regresses (Tillmann 1978; Oberl/inder et al. 1984). The 
distribution of mineralization of the subchondral bone, 
which reflects the long-term distribution of stress over the 
articular surface (Pauwels 1955, 1963; Kummer 1962; 
Tillmann 1978; Mfiller-Gerbl et al. 1989, 1992), may also 
be regarded as an adaptation to the way load is trans- 
mitted through the joint. This process was interpreted by 
Carter (1984) and Carter et al. (1991) as a biological 
response to the "loading history" of the tissue. It can be 
concluded from the bicentric pattern of subchondral 
mineralization of the trochlear notch (Tillmann 1971, 
1978; M/iller-Gerbl and Putz 1993; Eckstein et al. 1993a) 
that this incongruity is of some importance during the 
day-to-day use of the joint. 

It is certainly true that the articular surfaces become 
secondarily congruous under higher loads, and that as a 
result of this the contact area spreads over a great part 
of the articular surface (Eckstein et al. 1993b). Con- 
clusions about the local stress can nevertheless hardly be 
drawn, since the distribution of stress within the contact 
areas remains unknown (Hehne 1983; Miyanga et al. 
1984). The bicentric distribution of the subchondral mi- 
neralization does suggest, however, that the incongruity 
is not merely of importance when the joint is relatively 
unloaded, but plays a decisive role in the distribution of 
stress throughout the articular surface under natural 
physiological conditions also. 

Bullough (1981) and Greenwald (1991) have put for- 
ward models to show that a primarily incongruous geo- 
metry offers considerable advantages when it comes to 
the distribution of stress during load transmission 
throughout the articular surfaces of joints (Fig. 6). They 
have pointed out that this type of architecture guarantees 
better conditions for the nourishment of the articular 
cartilage, by providing intermittent stimulation and en- 
couraging the circulation of the synovial fluid. So far, 
these models have been based only on theoretical con- 
siderations and cannot therefore be made the basis of 
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Fig. 6. Differences in the distribution of the stress (o) over joint 
surfaces with varying geometry according to models by Bullough 
(1981) and Greenwald (1991): stress distribution under slight (F1), 
moderate (F2) and high load (Fa). Left side: primary incongruity 
of the joint surfaces; right side: primary congruity of the joint 
surfaces. Under middle and high load, a primarily incongruous joint 
shows a more even distribution of the stress over the articular 
surface than does a primarily congruous joint 

quantitative pronouncements. In order to assess how 
important incongruity is as a "functional" principle of 
stress reduction, further research on the geometry and on 
the stress distribution over the articulating surfaces of 
diarthrodial joints will be necessary. 
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