178 research outputs found

    Monkey Steering Responses Reveal Rapid Visual-Motor Feedback

    Get PDF
    The neural mechanisms underlying primate locomotion are largely unknown. While behavioral and theoretical work has provided a number of ideas of how navigation is controlled, progress will require direct physiolgical tests of the underlying mechanisms. In turn, this will require development of appropriate animal models. We trained three monkeys to track a moving visual target in a simple virtual environment, using a joystick to control their direction. The monkeys learned to quickly and accurately turn to the target, and their steering behavior was quite stereotyped and reliable. Monkeys typically responded to abrupt steps of target direction with a biphasic steering movement, exhibiting modest but transient overshoot. Response latencies averaged approximately 300 ms, and monkeys were typically back on target after about 1 s. We also exploited the variability of responses about the mean to explore the time-course of correlation between target direction and steering response. This analysis revealed a broad peak of correlation spanning approximately 400 ms in the recent past, during which steering errors provoke a compensatory response. This suggests a continuous, visual-motor loop controls steering behavior, even during the epoch surrounding transient inputs. Many results from the human literature also suggest that steering is controlled by such a closed loop. The similarity of our results to those in humans suggests the monkey is a very good animal model for human visually guided steering

    Influence of transnational economic alliances on the IFRS convergence decision in India - institutional perspectives

    Get PDF
    This study contributes to the literature on global governance by highlighting the importance of not losing sight of the nation state as an important player in the transnational governance arena. Specifically, literature on global (accounting) regulation devotes a great deal of attention to the roles of organisations and agencies with transnational remit (such as global standard setters, donor agencies) while often downplaying the significant impacts of the more traditional cross-country links forged through economic relationships and resource dependencies between national and transnational institutional fields. This was specially noted in the case of the indirect influences of the US’s decision to delay IFRS convergence. While being interpreted as an indirect source of influence, such a decision played a very significant role on the convergence negotiations in India. The study shows how the US influence was channelled through Japan with which India has significant trade and economic relations and, most importantly, holds a joint forum specifically to discuss convergence issues. The consequences of India’s links with countries such as US and Japan in the decision-making process provide a vivid indication of the important roles of cross-governmental relationships in the global governance arena, and also question the position of transnational organisations as pervasive powers in such governance. The study’s findings clearly demonstrate that the pursuit of full IFRS convergence strongly favoured by the transnational forces was invariably challenged in the Indian context by the influences of powerful nation states advocating a more cautious approach

    Advanced Computational Biology Methods Identify Molecular Switches for Malignancy in an EGF Mouse Model of Liver Cancer

    Get PDF
    The molecular causes by which the epidermal growth factor receptor tyrosine kinase induces malignant transformation are largely unknown. To better understand EGFs' transforming capacity whole genome scans were applied to a transgenic mouse model of liver cancer and subjected to advanced methods of computational analysis to construct de novo gene regulatory networks based on a combination of sequence analysis and entrained graph-topological algorithms. Here we identified transcription factors, processes, key nodes and molecules to connect as yet unknown interacting partners at the level of protein-DNA interaction. Many of those could be confirmed by electromobility band shift assay at recognition sites of gene specific promoters and by western blotting of nuclear proteins. A novel cellular regulatory circuitry could therefore be proposed that connects cell cycle regulated genes with components of the EGF signaling pathway. Promoter analysis of differentially expressed genes suggested the majority of regulated transcription factors to display specificity to either the pre-tumor or the tumor state. Subsequent search for signal transduction key nodes upstream of the identified transcription factors and their targets suggested the insulin-like growth factor pathway to render the tumor cells independent of EGF receptor activity. Notably, expression of IGF2 in addition to many components of this pathway was highly upregulated in tumors. Together, we propose a switch in autocrine signaling to foster tumor growth that was initially triggered by EGF and demonstrate the knowledge gain form promoter analysis combined with upstream key node identification

    Rotavirus NSP1 Inhibits NFΞΊB Activation by Inducing Proteasome-Dependent Degradation of Ξ²-TrCP: A Novel Mechanism of IFN Antagonism

    Get PDF
    Mechanisms by which viruses counter innate host defense responses generally involve inhibition of one or more components of the interferon (IFN) system. Multiple steps in the induction and amplification of IFN signaling are targeted for inhibition by viral proteins, and many of the IFN antagonists have direct or indirect effects on activation of latent cytoplasmic transcription factors. Rotavirus nonstructural protein NSP1 blocks transcription of type I IFNΞ±/Ξ² by inducing proteasome-dependent degradation of IFN-regulatory factors 3 (IRF3), IRF5, and IRF7. In this study, we show that rotavirus NSP1 also inhibits activation of NFΞΊB and does so by a novel mechanism. Proteasome-mediated degradation of inhibitor of ΞΊB (IΞΊBΞ±) is required for NFΞΊB activation. Phosphorylated IΞΊBΞ± is a substrate for polyubiquitination by a multisubunit E3 ubiquitin ligase complex, Skp1/Cul1/F-box, in which the F-box substrate recognition protein is Ξ²-transducin repeat containing protein (Ξ²-TrCP). The data presented show that phosphorylated IΞΊBΞ± is stable in rotavirus-infected cells because infection induces proteasome-dependent degradation of Ξ²-TrCP. NSP1 expressed in isolation in transiently transfected cells is sufficient to induce this effect. Targeted degradation of an F-box protein of an E3 ligase complex with a prominent role in modulation of innate immune signaling and cell proliferation pathways is a unique mechanism of IFN antagonism and defines a second strategy of immune evasion used by rotaviruses

    Perturbations of MicroRNA Function in Mouse Dicer Mutants Produce Retinal Defects and Lead to Aberrant Axon Pathfinding at the Optic Chiasm

    Get PDF
    During development axons encounter a variety of choice points where they have to make appropriate pathfinding decisions. The optic chiasm is a major decision point for retinal ganglion cell (RGC) axons en route to their target in order to ensure the correct wiring of the visual system. MicroRNAs (miRNAs) belong to the class of small non-coding RNA molecules and have been identified as important regulators of a variety of processes during embryonic development. However, their involvement in axon guidance decisions is less clear.We report here that the early loss of Dicer, an essential protein for the maturation of miRNAs, in all cells of the forming retina and optic chiasm leads to severe phenotypes of RGC axon pathfinding at the midline. Using a conditional deletion approach in mice, we find in homozygous Dicer mutants a marked increase of ipsilateral projections, RGC axons extending outside the optic chiasm, the formation of a secondary optic tract and a substantial number of RGC axons projecting aberrantly into the contralateral eye. In addition, the mutant mice display a microphthalmia phenotype.Our work demonstrates an important role of Dicer controlling the extension of RGC axons to the brain proper. It indicates that miRNAs are essential regulatory elements for mechanisms that ensure correct axon guidance decisions at the midline and thus have a central function in the establishment of circuitry during the development of the nervous system

    HCV Induces Oxidative and ER Stress, and Sensitizes Infected Cells to Apoptosis in SCID/Alb-uPA Mice

    Get PDF
    Hepatitis C virus (HCV) is a blood-borne pathogen and a major cause of liver disease worldwide. Gene expression profiling was used to characterize the transcriptional response to HCV H77c infection. Evidence is presented for activation of innate antiviral signaling pathways as well as induction of lipid metabolism genes, which may contribute to oxidative stress. We also found that infection of chimeric SCID/Alb-uPA mice by HCV led to signs of hepatocyte damage and apoptosis, which in patients plays a role in activation of stellate cells, recruitment of macrophages, and the subsequent development of fibrosis. Infection of chimeric mice with HCV H77c also led an inflammatory response characterized by infiltration of monocytes and macrophages. There was increased apoptosis in HCV-infected human hepatocytes in H77c-infected mice but not in mice inoculated with a replication incompetent H77c mutant. Moreover, TUNEL reactivity was restricted to HCV-infected hepatocytes, but an increase in FAS expression was not. To gain insight into the factors contributing specific apoptosis of HCV infected cells, immunohistological and confocal microscopy using antibodies for key apoptotic mediators was done. We found that the ER chaperone BiP/GRP78 was increased in HCV-infected cells as was activated BAX, but the activator of ER stress–mediated apoptosis CHOP was not. We found that overall levels of NF-ΞΊB and BCL-xL were increased by infection; however, within an infected liver, comparison of infected cells to uninfected cells indicated both NF-ΞΊB and BCL-xL were decreased in HCV-infected cells. We conclude that HCV contributes to hepatocyte damage and apoptosis by inducing stress and pro-apoptotic BAX while preventing the induction of anti-apoptotic NF-ΞΊB and BCL-xL, thus sensitizing hepatocytes to apoptosis

    Gene therapy for carcinoma of the breast: Pro-apoptotic gene therapy

    Get PDF
    The dysregulation of apoptosis contributes in a variety of ways to the malignant phenotype. It is increasingly recognized that the alteration of pro-apoptotic and anti-apoptotic molecules determines not only escape from mechanisms that control cell cycle and DNA damage, but also endows the cancer cells with the capacity to survive in the presence of a metabolically adverse milieu, to resist the attack of the immune system, to locally invade and survive despite a lack of tissue anchorage, and to evade the otherwise lethal insults induced by drugs and radiotherapy. A multitude of apoptosis mediators has been identified in the past decade, and the roles of several of them in breast cancer have been delineated by studying the clinical correlates of pathologically documented abnormalities. Using this information, attempts are being made to correct the fundamental anomalies at the genetic level. Fundamental to this end are the design of more efficient and selective gene transfer systems, and the employment of complex interventions that are tailored to breast cancer and that are aimed concomitantly towards different components of the redundant regulatory pathways. The combination of such genetic modifications is most likely to be effective when combined with conventional treatments, thus robustly activating several pro-apoptotic pathways

    MiR-218 Inhibits Invasion and Metastasis of Gastric Cancer by Targeting the Robo1 Receptor

    Get PDF
    MicroRNAs play key roles in tumor metastasis. Here, we describe the regulation and function of miR-218 in gastric cancer (GC) metastasis. miR-218 expression is decreased along with the expression of one of its host genes, Slit3 in metastatic GC. However, Robo1, one of several Slit receptors, is negatively regulated by miR-218, thus establishing a negative feedback loop. Decreased miR-218 levels eliminate Robo1 repression, which activates the Slit-Robo1 pathway through the interaction between Robo1 and Slit2, thus triggering tumor metastasis. The restoration of miR-218 suppresses Robo1 expression and inhibits tumor cell invasion and metastasis in vitro and in vivo. Taken together, our results describe a Slit-miR-218-Robo1 regulatory circuit whose disruption may contribute to GC metastasis. Targeting miR-218 may provide a strategy for blocking tumor metastasis
    • …
    corecore