440 research outputs found

    Transforming growth factor-Ξ² and breast cancer: Lessons learned from genetically altered mouse models

    Get PDF
    Transforming growth factor (TGF)-Ξ²s are plausible candidate tumor suppressors in the breast. They also have oncogenic activities under certain circumstances, however. Genetically altered mouse models provide powerful tools to analyze the complexities of TGF-Ξ²action in the context of the whole animal. Overexpression of TGF-Ξ² can suppress tumorigenesis in the mammary gland, raising the possibility that use of pharmacologic agents to enhance TGF-Ξ² function locally might be an effective method for the chemoprevention of breast cancer. Conversely, loss of TGF-Ξ² response increases spontaneous and induced tumorigenesis in the mammary gland. This confirms that endogenous TGF-Ξ²s have tumor suppressor activity in the mammary gland, and suggests that the loss of TGF-Ξ² receptors seen in some human breast hyperplasias may play a causal role in tumor development

    GPs' use of problem solving therapy for depression: a qualitative study of barriers to and enablers of evidence based care

    Get PDF
    BACKGROUND: Depression is a major health concern, predominantly treated by general practitioners (GPs). Problem solving therapy (PST) is recognised as an effective treatment for depression that is not widely used by GPs. This research aims to explore barriers and enablers that may influence GPs use of this treatment. METHOD: Qualitative methodology was used including individual and focus group interviews of GPs, PST experts and consumers. Analysis was undertaken using the Theory of Planned Behaviour (TPB) as a framework. RESULTS: A spectrum of potential influences, on GPs' use of PST emerged. Both barriers and enablers were identified. PST was perceived as being close to current practice approaches and potentially beneficial to both doctor and patient. In addition to a broadly positive attitude to PST, expressed by those with previous experience of its use, potential solutions to perceived barriers emerged. By contrast some GPs expressed fear that the use of PST would result in loss of doctor control of consultations and associated potential adverse patient outcomes. Patient expectations, which emerged as not always coinciding with GPs' perception of those expectations, were identified as a potential influence on GPs' decision concerning adoption of PST. In addition specific factors, including GP skill and confidence, consultation time constraints and technical issues related to PST were noted as potential concerns. CONCLUSION: This research contributes to our knowledge of the factors that may influence GPs' decisions regarding use of PST as a treatment for depression. It recognises both barriers and enablers. It suggests that for many GPs, PST is viewed in a positive light, providing encouragement to those seeking to increase the provision of PST by GPs. In identifying a number of potential barriers, along with associated options to address many of these barriers, it provides insights which may assist in the planning of GP training in PST

    RACK1 Associates with Muscarinic Receptors and Regulates M2 Receptor Trafficking

    Get PDF
    Receptor internalization from the cell surface occurs through several mechanisms. Some of these mechanisms, such as clathrin coated pits, are well understood. The M2 muscarinic acetylcholine receptor undergoes internalization via a poorly-defined clathrin-independent mechanism. We used isotope coded affinity tagging and mass spectrometry to identify the scaffolding protein, receptor for activated C kinase (RACK1) as a protein enriched in M2-immunoprecipitates from M2-expressing cells over those of non-M2 expressing cells. Treatment of cells with the agonist carbachol disrupted the interaction of RACK1 with M2. We further found that RACK1 overexpression inhibits the internalization and subsequent down regulation of the M2 receptor in a receptor subtype-specific manner. Decreased RACK1 expression increases the rate of agonist internalization of the M2 receptor, but decreases the extent of subsequent down-regulation. These results suggest that RACK1 may both interfere with agonist-induced sequestration and be required for subsequent targeting of internalized M2 receptors to the degradative pathway

    Genomic Organization and Expression Demonstrate Spatial and Temporal Hox Gene Colinearity in the Lophotrochozoan Capitella sp. I

    Get PDF
    Hox genes define regional identities along the anterior–posterior axis in many animals. In a number of species, Hox genes are clustered in the genome, and the relative order of genes corresponds with position of expression in the body. Previous Hox gene studies in lophotrochozoans have reported expression for only a subset of the Hox gene complement and/or lack detailed genomic organization information, limiting interpretations of spatial and temporal colinearity in this diverse animal clade. We studied expression and genomic organization of the single Hox gene complement in the segmented polychaete annelid Capitella sp. I. Total genome searches identified 11 Hox genes in Capitella, representing 11 distinct paralog groups thought to represent the ancestral lophotrochozoan complement. At least 8 of the 11 Capitella Hox genes are genomically linked in a single cluster, have the same transcriptional orientation, and lack interspersed non-Hox genes. Studying their expression by situ hybridization, we find that the 11 Capitella Hox genes generally exhibit spatial and temporal colinearity. With the exception of CapI-Post1, Capitella Hox genes are all expressed in broad ectodermal domains during larval development, consistent with providing positional information along the anterior–posterior axis. The anterior genes CapI-lab, CapI-pb, and CapI-Hox3 initiate expression prior to the appearance of segments, while more posterior genes appear at or soon after segments appear. Many of the Capitella Hox genes have either an anterior or posterior expression boundary coinciding with the thoracic–abdomen transition, a major body tagma boundary. Following metamorphosis, several expression patterns change, including appearance of distinct posterior boundaries and restriction to the central nervous system. Capitella Hox genes have maintained a clustered organization, are expressed in the canonical anterior–posterior order found in other metazoans, and exhibit spatial and temporal colinearity, reflecting Hox gene characteristics that likely existed in the protostome–deuterostome ancestor

    Level of suicidal intent predicts overall mortality and suicide after attempted suicide: a 12-year follow-up study

    Get PDF
    BACKGROUND: The aim of this study was to comprehensively examine clinical risk factors, including suicide intent and hopelessness, for suicide and risk of death from all causes after attempted suicide over a 12-year follow-up period. METHODS: A systematic sample of 224 patients from consecutive cases of attempted suicide referred to health care in four Finnish cities between 1 January and 31 July 1990 was interviewed. RESULTS: After 12 years of follow-up 22% of these patients had died, 8% by committing suicide. The only statistically significant risk factor for eventual suicide was high scores on Beck's Suicidal Intention Scale. Male gender, older age, physical illness or disability and high scores on Beck's Suicidal Intention Scale predicted death overall. CONCLUSIONS: Following attempted suicide, high intention to kill oneself is a significant risk factor for both death from all causes and suicide

    Temporal and Tissue Specific Regulation of RP-Associated Splicing Factor Genes PRPF3, PRPF31 and PRPC8β€”Implications in the Pathogenesis of RP

    Get PDF
    Genetic mutations in several ubiquitously expressed RNA splicing genes such as PRPF3, PRP31 and PRPC8, have been found to cause retina-specific diseases in humans. To understand this intriguing phenomenon, most studies have been focused on testing two major hypotheses. One hypothesis assumes that these mutations interrupt retina-specific interactions that are important for RNA splicing, implying that there are specific components in the retina interacting with these splicing factors. The second hypothesis suggests that these mutations have only a mild effect on the protein function and thus affect only the metabolically highly active cells such as retinal photoreceptors.We examined the second hypothesis using the PRPF3 gene as an example. We analyzed the spatial and temporal expression of the PRPF3 gene in mice and found that it is highly expressed in retinal cells relative to other tissues and its expression is developmentally regulated. In addition, we also found that PRP31 and PRPC8 as well as snRNAs are highly expressed in retinal cells.Our data suggest that the retina requires a relatively high level of RNA splicing activity for optimal tissue-specific physiological function. Because the RP18 mutation has neither a debilitating nor acute effect on protein function, we suggest that retinal degeneration is the accumulative effect of decades of suboptimal RNA splicing due to the mildly impaired protein

    An Essential Role of the Cytoplasmic Tail of CXCR4 in G-Protein Signaling and Organogenesis

    Get PDF
    CXCR4 regulates cell proliferation, enhances cell survival and induces chemotaxis, yet molecular mechanisms underlying its signaling remain elusive. Like all other G-protein coupled receptors (GPCRs), CXCR4 delivers signals through G-protein-dependent and -independent pathways, the latter involving its serine-rich cytoplasmic tail. To evaluate the signaling and biological contribution of this G-protein-independent pathway, we generated mutant mice that express cytoplasmic tail-truncated CXCR4 (Ξ”T) by a gene knock-in approach. We found that Ξ”T mice exhibited multiple developmental defects, with not only G-protein-independent but also G-protein-dependent signaling events completely abolished, despite Ξ”T's ability to still associate with G-proteins. These results reveal an essential positive regulatory role of the cytoplasmic tail in CXCR4 signaling and suggest the tail is crucial for mediating G-protein activation and initiating crosstalk between G-protein-dependent and G-protein-independent pathways for correct GPCR signaling

    Impaired Structural Connectivity of Socio-Emotional Circuits in Autism Spectrum Disorders: A Diffusion Tensor Imaging Study

    Get PDF
    Abnormal white matter development may disrupt integration within neural circuits, causing particular impairments in higher-order behaviours. In autism spectrum disorders (ASDs), white matter alterations may contribute to characteristic deficits in complex socio-emotional and communication domains. Here, we used diffusion tensor imaging (DTI) and tract based spatial statistics (TBSS) to evaluate white matter microstructure in ASD.DTI scans were acquired for 19 children and adolescents with ASD (∼8-18 years; mean 12.4Β±3.1) and 16 age and IQ matched controls (∼8-18 years; mean 12.3Β±3.6) on a 3T MRI system. DTI values for fractional anisotropy, mean diffusivity, radial diffusivity and axial diffusivity, were measured. Age by group interactions for global and voxel-wise white matter indices were examined. Voxel-wise analyses comparing ASD with controls in: (i) the full cohort (ii), children only (≀12 yrs.), and (iii) adolescents only (>12 yrs.) were performed, followed by tract-specific comparisons. Significant age-by-group interactions on global DTI indices were found for all three diffusivity measures, but not for fractional anisotropy. Voxel-wise analyses revealed prominent diffusion measure differences in ASD children but not adolescents, when compared to healthy controls. Widespread increases in mean and radial diffusivity in ASD children were prominent in frontal white matter voxels. Follow-up tract-specific analyses highlighted disruption to pathways integrating frontal, temporal, and occipital structures involved in socio-emotional processing.Our findings highlight disruption of neural circuitry in ASD, particularly in those white matter tracts that integrate the complex socio-emotional processing that is impaired in this disorder

    Aerosols in the Pre-industrial Atmosphere

    Get PDF
    Purpose of Review: We assess the current understanding of the state and behaviour of aerosols under pre-industrial conditions and the importance for climate. Recent Findings: Studies show that the magnitude of anthropogenic aerosol radiative forcing over the industrial period calculated by climate models is strongly affected by the abundance and properties of aerosols in the pre-industrial atmosphere. The low concentration of aerosol particles under relatively pristine conditions means that global mean cloud albedo may have been twice as sensitive to changes in natural aerosol emissions under pre-industrial conditions compared to present-day conditions. Consequently, the discovery of new aerosol formation processes and revisions to aerosol emissions have large effects on simulated historical aerosol radiative forcing. Summary: We review what is known about the microphysical, chemical, and radiative properties of aerosols in the pre-industrial atmosphere and the processes that control them. Aerosol properties were controlled by a combination of natural emissions, modification of the natural emissions by human activities such as land-use change, and anthropogenic emissions from biofuel combustion and early industrial processes. Although aerosol concentrations were lower in the pre-industrial atmosphere than today, model simulations show that relatively high aerosol concentrations could have been maintained over continental regions due to biogenically controlled new particle formation and wildfires. Despite the importance of pre-industrial aerosols for historical climate change, the relevant processes and emissions are given relatively little consideration in climate models, and there have been very few attempts to evaluate them. Consequently, we have very low confidence in the ability of models to simulate the aerosol conditions that form the baseline for historical climate simulations. Nevertheless, it is clear that the 1850s should be regarded as an early industrial reference period, and the aerosol forcing calculated from this period is smaller than the forcing since 1750. Improvements in historical reconstructions of natural and early anthropogenic emissions, exploitation of new Earth system models, and a deeper understanding and evaluation of the controlling processes are key aspects to reducing uncertainties in future
    • …
    corecore