21 research outputs found

    Turbulence and galactic structure

    Full text link
    Interstellar turbulence is driven over a wide range of scales by processes including spiral arm instabilities and supernovae, and it affects the rate and morphology of star formation, energy dissipation, and angular momentum transfer in galaxy disks. Star formation is initiated on large scales by gravitational instabilities which control the overall rate through the long dynamical time corresponding to the average ISM density. Stars form at much higher densities than average, however, and at much faster rates locally, so the slow average rate arises because the fraction of the gas mass that forms stars at any one time is low, ~10^{-4}. This low fraction is determined by turbulence compression, and is apparently independent of specific cloud formation processes which all operate at lower densities. Turbulence compression also accounts for the formation of most stars in clusters, along with the cluster mass spectrum, and it gives a hierarchical distribution to the positions of these clusters and to star-forming regions in general. Turbulent motions appear to be very fast in irregular galaxies at high redshift, possibly having speeds equal to several tenths of the rotation speed in view of the morphology of chain galaxies and their face-on counterparts. The origin of this turbulence is not evident, but some of it could come from accretion onto the disk. Such high turbulence could help drive an early epoch of gas inflow through viscous torques in galaxies where spiral arms and bars are weak. Such evolution may lead to bulge or bar formation, or to bar re-formation if a previous bar dissolved. We show evidence that the bar fraction is about constant with redshift out to z~1, and model the formation and destruction rates of bars required to achieve this constancy.Comment: in: Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning Fork strikes a New Note, Eds., K. Freeman, D. Block, I. Puerari, R. Groess, Dordrecht: Kluwer, in press (presented at a conference in South Africa, June 7-12, 2004). 19 pgs, 5 figure

    Cold gas accretion in galaxies

    Get PDF
    Evidence for the accretion of cold gas in galaxies has been rapidly accumulating in the past years. HI observations of galaxies and their environment have brought to light new facts and phenomena which are evidence of ongoing or recent accretion: 1) A large number of galaxies are accompanied by gas-rich dwarfs or are surrounded by HI cloud complexes, tails and filaments. It may be regarded as direct evidence of cold gas accretion in the local universe. It is probably the same kind of phenomenon of material infall as the stellar streams observed in the halos of our galaxy and M31. 2) Considerable amounts of extra-planar HI have been found in nearby spiral galaxies. While a large fraction of this gas is produced by galactic fountains, it is likely that a part of it is of extragalactic origin. 3) Spirals are known to have extended and warped outer layers of HI. It is not clear how these have formed, and how and for how long the warps can be sustained. Gas infall has been proposed as the origin. 4) The majority of galactic disks are lopsided in their morphology as well as in their kinematics. Also here recent accretion has been advocated as a possible cause. In our view, accretion takes place both through the arrival and merging of gas-rich satellites and through gas infall from the intergalactic medium (IGM). The infall may have observable effects on the disk such as bursts of star formation and lopsidedness. We infer a mean ``visible'' accretion rate of cold gas in galaxies of at least 0.2 Msol/yr. In order to reach the accretion rates needed to sustain the observed star formation (~1 Msol/yr), additional infall of large amounts of gas from the IGM seems to be required.Comment: To appear in Astronomy & Astrophysics Reviews. 34 pages. Full-resolution version available at http://www.astron.nl/~oosterlo/accretionRevie

    Evolutionary and pulsational properties of white dwarf stars

    Full text link
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie

    Comparing the pre-SNe feedback and environmental pressures for 6000 HII regions across 19 nearby spiral galaxies

    Get PDF
    The feedback from young stars (i.e. pre-supernova) is thought to play a crucial role in molecular cloud destruction. In this paper, we assess the feedback mechanisms acting within a sample of 5810 HII regions identified from the PHANGS-MUSE survey of 19 nearby (1 1, and expanding, yet there is a small sample of compact HII regions with Ptot,max/Pde<1P_\mathrm{tot,max}/P_\mathrm{de} < 1 (\sim1% of the sample). These mostly reside in galaxy centres (Rgal<1R_\mathrm{gal}<1kpc), or, specifically, environments of high gas surface density; log(Σgas/Mpc2\Sigma_\mathrm{gas}/\mathrm{M_\odot} \mathrm{pc}^{-2})\sim2.5 (measured on kpc-scales). Lastly, we compare to a sample of literature measurements for PthermP_\mathrm{therm} and PradP_\mathrm{rad} to investigate how dominant pressure term transitions over around 5dex in spatial dynamic range and 10 dex in pressure

    Dynamics of Disks and Warps

    Full text link
    This chapter reviews theoretical work on the stellar dynamics of galaxy disks. All the known collective global instabilities are identified, and their mechanisms described in terms of local wave mechanics. A detailed discussion of warps and other bending waves is also given. The structure of bars in galaxies, and their effect on galaxy evolution, is now reasonably well understood, but there is still no convincing explanation for their origin and frequency. Spiral patterns have long presented a special challenge, and ideas and recent developments are reviewed. Other topics include scattering of disk stars and the survival of thin disks.Comment: Chapter accepted to appear in Planets, Stars and Stellar Systems, vol 5, ed G. Gilmore. 32 pages, 17 figures. Includes minor corrections made in proofs. Uses emulateapj.st

    The observable properties of cool winds from galaxies, AGN, and star clusters - I. Theoretical framework

    No full text
    Winds arising from galaxies, star clusters, and active galactic nuclei are crucial players in star and galaxy formation, but it has proven remarkably difficult to use observations of them to determine physical properties of interest, particularly mass fluxes. Much of the difficulty stems from a lack of a theory that links a physically realistic model for winds' density, velocity and covering factors to calculations of light emission and absorption. In this paper we provide such a model. We consider a wind launched from a turbulent region with a range of column densities, derive the differential acceleration of gas as a function of column density, and use this result to compute winds' absorption profiles, emission profiles and emission intensity maps in both optically thin and optically thick species. The model is sufficiently simple that all required computations can be done analytically up to straightforward numerical integrals, rendering it suitable for the problem of deriving physical parameters by fitting models to observed data. We show that our model produces realistic absorption and emission profiles for some example cases, and argue that the most promising methods of deducing mass fluxes are based on combinations of absorption lines of different optical depths, or on combining absorption with measurements of molecular line emission. In the second paper in this series, we expand on these ideas by introducing a set of observational diagnostics that are significantly more robust than those commonly in use, and that can be used to obtain improved estimates of wind properties

    The Life and Times of Giant Molecular Clouds

    No full text
    Giant molecular clouds (GMCs) are the sites of star formation and stellar feedback in galaxies. Their properties set the initial conditions for star formation and their lifecycles determine how feedback regulates galaxy evolution. In recent years, the advent of high-resolution telescopes has enabled systematic GMC-scale studies of the molecular interstellar medium in nearby galaxies, now covering a wide range of physical conditions and allowing for the first studies of how GMC properties depend on galactic environment. These observational developments have been accompanied by numerical simulations of improving resolution that are increasingly accurately accounting for the effects of the galactic-scale environment on GMCs, while simultaneously improving the treatment of the small-scale processes of star-formation and stellar feedback within them. The combination of these recent developments has greatly improved our understanding of the formation, evolution, and destruction of GMCs. We review the current state of the field, highlight current open questions, and discuss promising avenues for future studies

    Benefits of diversity

    No full text
    corecore