1,475 research outputs found

    Exploring Network Analysis for Urban Planning and Disaster Risk Reduction in Informal Settlements: Cases From Honduras, Jamaica, and Peru

    Get PDF
    The work explores the use of street network analysis on informal settlements and discusses the potential and limitations of this methodology to advance disaster risk reduction and urban resilience. The urban network analysis tool is used to conduct graph analysis measures on street networks in three informal settlements in the LAC region: Portmore, Jamaica; Tegucigalpa, Honduras; and Lima, Peru. Authors incorporate risk variables identified by these communities and combine them with prospective scenarios in which street networks are strategically intervened to improve performance. Authors also compute one graph index named Reach centrality. Results are presented spatially through thematic maps, and statistically by plotting cumulative distributions. Findings show that centrality measures of settlements' networks helped identify key nodes or roads that may be critical for people's daily life after disasters, and strategic to improve accessibility. The proposed methodology shows potential to inform decisions on urban planning and disaster risk reduction

    Constrained Reinforcement Learning for Dynamic Optimization under Uncertainty

    Get PDF
    Dynamic real-time optimization (DRTO) is a challenging task due to the fact that optimal operating conditions must be computed in real time. The main bottleneck in the industrial application of DRTO is the presence of uncertainty. Many stochastic systems present the following obstacles: 1) plant-model mismatch, 2) process disturbances, 3) risks in violation of process constraints. To accommodate these difficulties, we present a constrained reinforcement learning (RL) based approach. RL naturally handles the process uncertainty by computing an optimal feedback policy. However, no state constraints can be introduced intuitively. To address this problem, we present a chance-constrained RL methodology. We use chance constraints to guarantee the probabilistic satisfaction of process constraints, which is accomplished by introducing backoffs, such that the optimal policy and backoffs are computed simultaneously. Backoffs are adjusted using the empirical cumulative distribution function to guarantee the satisfaction of a joint chance constraint. The advantage and performance of this strategy are illustrated through a stochastic dynamic bioprocess optimization problem, to produce sustainable high-value bioproducts

    Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cannabinoid receptor type 2 (CBR2) inhibits microglial reactivity through a molecular mechanism yet to be elucidated. We hypothesized that CBR2 activation induces an anti-inflammatory phenotype in microglia by inhibiting extracellular signal-regulated kinase (ERK) pathway, via mitogen-activated protein kinase-phosphatase (MKP) induction. MKPs regulate mitogen activated protein kinases, but their role in the modulation of microglial phenotype is not fully understood.</p> <p>Results</p> <p>JWH015 (a CBR2 agonist) increased MKP-1 and MKP-3 expression, which in turn reduced p-ERK1/2 in LPS-stimulated primary microglia. These effects resulted in a significant reduction of tumor necrosis factor-α (TNF) expression and microglial migration. We confirmed the causative link of these findings by using MKP inhibitors. We found that the selective inhibition of MKP-1 by Ro-31-8220 and PSI2106, did not affect p-ERK expression in LPS+JWH015-treated microglia. However, the inhibition of both MKP-1 and MKP-3 by triptolide induced an increase in p-ERK expression and in microglial migration using LPS+JWH015-treated microglia.</p> <p>Conclusion</p> <p>Our results uncover a cellular microglial pathway triggered by CBR2 activation. These data suggest that the reduction of pro-inflammatory factors and microglial migration via MKP-3 induction is part of the mechanism of action of CBR2 agonists. These findings may have clinical implications for further drug development.</p

    Proinflammatory-activated trigeminal satellite cells promote neuronal sensitization: relevance for migraine pathology.

    Get PDF
    BACKGROUND: Migraine is a complex, chronic, painful, neurovascular disorder characterized by episodic activation of the trigeminal system. Increased levels of calcitonin gene-related peptide (CGRP) are found at different levels during migraine attacks. Interestingly, CGRP is also released within the trigeminal ganglia suggesting possible local effects on satellite cells, a specialized type of glia that ensheaths trigeminal neurons. CGRP was shown to enhance satellite-cell production of interleukin 1beta (IL-1beta), while trigeminal neurons express an activity-dependent production of nitric oxide (NO). Thus, in the present study we tested the hypothesis that IL-1beta and NO induce trigeminal satellite cell activation, and that once activated these cells can influence neuronal responses. RESULTS: Primary cultures of rat trigeminal satellite cells isolated from neuronal cultures were characterized in vitro. Cyclooxygenase (COX) expression and activity were taken as a marker of glial pro-inflammatory activation. Most of the experiments were carried out to characterize satellite cell responses to the two different pro-inflammatory stimuli. Subsequently, medium harvested from activated satellite cells was used to test possible modulatory effects of glial factors on trigeminal neuronal activity. IL-1beta and the NO donor diethylenetriamine/nitric oxide (DETA/NO) elevated PGE2 release by satellite cells. The stimulatory effect of IL-1beta was mediated mainly by upregulation of the inducible form of COX enzyme (COX2), while NO increased the constitutive COX activity. Regardless of the activator used, it is relevant that short exposures of trigeminal satellite cells to both activators induced modifications within the cells which led to significant PGE2 production after removal of the pro-inflammatory stimuli. This effect allowed us to harvest medium from activated satellite cells (so-called 'conditioned medium') that did not contain any stimulus, and thus test the effects of glial factors on neuronal activation. Conditioned medium from satellite cells activated by either IL-1beta or NO augmented the evoked release of CGRP by trigeminal neurons. CONCLUSION: These findings indicate that satellite cells contribute to migraine-related neurochemical events and are induced to do so by autocrine/paracrine stimuli (such as IL-1beta and NO). The responsiveness of IL-1beta to CGRP creates the potential for a positive feedback loop and, thus, a plurality of targets for therapeutic intervention in migraine

    Household Transmission of Rotavirus in a Community with Rotavirus Vaccination in Quininde, Ecuador

    Get PDF
    Background: We studied the transmission of rotavirus infection in households in peri-urban Ecuador in the vaccination era. Methods: Stool samples were collected from household contacts of child rotavirus cases, diarrhea controls and healthy controls following presentation of the index child to health facilities. Rotavirus infection status of contacts was determined by RT-qPCR. We examined factors associated with transmissibility (index-case characteristics) and susceptibility (householdcontact characteristics). Results: Amongst cases, diarrhea controls and healthy control household contacts, infection attack rates (iAR) were 55%, 8% and 2%, (n = 137, 130, 137) respectively. iARs were higher from index cases with vomiting, and amongst siblings. Disease ARs were higher when the index child was ,18 months and had vomiting, with household contact ,10 years and those sharing a room with the index case being more susceptible. We found no evidence of asymptomatic infections leading to disease transmission. Conclusion: Transmission rates of rotavirus are high in households with an infected child, while background infections are rare. We have identified factors associated with transmission (vomiting/young age of index case) and susceptibility (young age/sharing a room/being a sibling of the index case). Vaccination may lead to indirect benefits by averting episodes or reducing symptoms in vaccinees

    Argumentation in school science : Breaking the tradition of authoritative exposition through a pedagogy that promotes discussion and reasoning

    Get PDF
    The value of argumentation in science education has become internationally recognised and has been the subject of many research studies in recent years. Successful introduction of argumentation activities in learning contexts involves extending teaching goals beyond the understanding of facts and concepts, to include an emphasis on cognitive and metacognitive processes, epistemic criteria and reasoning. The authors focus on the difficulties inherent in shifting a tradition of teaching from one dominated by authoritative exposition to one that is more dialogic, involving small-group discussion based on tasks that stimulate argumentation. The paper builds on previous research on enhancing the quality of argument in school science, to focus on how argumentation activities have been designed, with appropriate strategies, resources and modelling, for pedagogical purposes. The paper analyses design frameworks, their contexts and lesson plans, to evaluate their potential for enhancing reasoning through foregrounding the processes of argumentation. Examples of classroom dialogue where teachers adopt the frameworks/plans are analysed to show how argumentation processes are scaffolded. The analysis shows that several layers of interpretation are needed and these layers need to be aligned for successful implementation. The analysis serves to highlight the potential and limitations of the design frameworks

    The pharmacological regulation of cellular mitophagy

    Get PDF
    Small molecules are pharmacological tools of considerable value for dissecting complex biological processes and identifying potential therapeutic interventions. Recently, the cellular quality-control process of mitophagy has attracted considerable research interest; however, the limited availability of suitable chemical probes has restricted our understanding of the molecular mechanisms involved. Current approaches to initiate mitophagy include acute dissipation of the mitochondrial membrane potential (ΔΨm) by mitochondrial uncouplers (for example, FCCP/CCCP) and the use of antimycin A and oligomycin to impair respiration. Both approaches impair mitochondrial homeostasis and therefore limit the scope for dissection of subtle, bioenergy-related regulatory phenomena. Recently, novel mitophagy activators acting independently of the respiration collapse have been reported, offering new opportunities to understand the process and potential for therapeutic exploitation. We have summarized the current status of mitophagy modulators and analyzed the available chemical tools, commenting on their advantages, limitations and current applications

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)

    Ecological Niche Dimensionality and the Evolutionary Diversification of Stick Insects

    Get PDF
    The degree of phenotypic divergence and reproductive isolation between taxon pairs can vary quantitatively, and often increases as evolutionary divergence proceeds through various stages, from polymorphism to population differentiation, ecotype and race formation, speciation, and post-speciational divergence. Although divergent natural selection promotes divergence, it does not always result in strong differentiation. For example, divergent selection can fail to complete speciation, and distinct species pairs sometimes collapse (‘speciation in reverse’). Widely-discussed explanations for this variability concern genetic architecture, and the geographic arrangement of populations. A less-explored possibility is that the degree of phenotypic and reproductive divergence between taxon pairs is positively related to the number of ecological niche dimensions (i.e., traits) subject to divergent selection. Some data supporting this idea stem from laboratory experimental evolution studies using Drosophila, but tests from nature are lacking. Here we report results from manipulative field experiments in natural populations of herbivorous Timema stick insects that are consistent with this ‘niche dimensionality’ hypothesis. In such insects, divergent selection between host plants might occur for cryptic colouration (camouflage to evade visual predation), physiology (to detoxify plant chemicals), or both of these niche dimensions. We show that divergent selection on the single niche dimension of cryptic colouration can result in ecotype formation and intermediate levels of phenotypic and reproductive divergence between populations feeding on different hosts. However, greater divergence between a species pair involved divergent selection on both niche dimensions. Although further replication of the trends reported here is required, the results suggest that dimensionality of selection may complement genetic and geographic explanations for the degree of diversification in nature

    A unique therapeutic approach to emesis and itch with a proanthocyanidin-rich genonutrient

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We examined the therapeutic potential of a proprietary <it>Croton palanostigma </it>extract (Zangrado<sup>®</sup>) in the management of emesis and itch.</p> <p>Methods</p> <p>Emesis was induced in ferrets with morphine-6-glucuronide (0.05 mg/kg sc) in the presence of Zangrado (3 mg/kg, ip) and the cannabinoid receptor 1 antagonist, AM 251 (5 mg/kg, ip). Topical Zangrado (1%) was assessed for anti-pruretic actions in the 5-HT-induced scratching model in rats and evaluated in capsaicin-induced gastric hyperemia as measured by laser doppler flow. In the <it>Apc</it><sup><it>Min</it></sup>mouse model of precancerous adenomatosis polyposis, mice received Zangrado (100 μg/ml in drinking water) from the age of 6 – 16 weeks for effects on polyp number. In RAW 264.7 cells Zangrado was examined for effects on lipopolysaccharide-induced nitrite production.</p> <p>Results</p> <p>Zangrado was a highly effective anti-emetic, reducing morphine-induced vomiting and retching by 77%. These benefits were not associated with sedation or hypothermia and were not reversed by cannabinoid receptor antagonism. Itch responses were blocked in both the morphine and 5-HT models. Zangrado did not exacerbate the <it>Apc</it><sup><it>Min</it></sup>condition rather health was improved. Capsaicin-induced hyperemia was blocked by Zangrado, which also attenuated the production of nitric oxide by activated macrophages.</p> <p>Conclusion</p> <p>Zangrado is an effective anti-emetic and anti-itch therapy that is devoid of common side-effects, cannabinoid-independent and broadly suppresses sensory afferent nerve activation. This complementary medicine represents a promising new approach to the management of nausea, itch and irritable bowel syndrome.</p
    corecore