776 research outputs found

    Rapport-Building in Investigative Interviews of Alleged Child Sexual Abuse Victims

    Get PDF
    Research shows that both utterance type and rapport-building can affect children’s productivity during the substantive phase of investigative interviews. However, few researchers have examined the effects of utterance type and content on children’s productivity within the rapport-building phase. In the present study, transcripts of interviews with 94 4- to 13-year-old alleged victims were examined. Interviews were conducted using either the National Institute of Child Health and Human Development (NICHD) Protocol or the Memorandum of Good Practice (MoGP). The NICHD Protocol interviews contained more invitations and questions about events and hobbies/likes than the MoGP interviews. Children’s productivity was associated with utterance type and topic, showing both the benefits of invitations and questions asking about past events. Our findings complement research focusing on the substantive phase of child forensic interviews, suggesting that both utterance type and prompt content during the rapport-building phase can affect children’s immediate productivity.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Wiley

    An Integrated Bioinformatics Approach Identifies Elevated Cyclin E2 Expression and E2F Activity as Distinct Features of Tamoxifen Resistant Breast Tumors

    Get PDF
    Approximately half of estrogen receptor (ER) positive breast tumors will fail to respond to endocrine therapy. Here we used an integrative bioinformatics approach to analyze three gene expression profiling data sets from breast tumors in an attempt to uncover underlying mechanisms contributing to the development of resistance and potential therapeutic strategies to counteract these mechanisms. Genes that are differentially expressed in tamoxifen resistant vs. sensitive breast tumors were identified from three different publically available microarray datasets. These differentially expressed (DE) genes were analyzed using gene function and gene set enrichment and examined in intrinsic subtypes of breast tumors. The Connectivity Map analysis was utilized to link gene expression profiles of tamoxifen resistant tumors to small molecules and validation studies were carried out in a tamoxifen resistant cell line. Despite little overlap in genes that are differentially expressed in tamoxifen resistant vs. sensitive tumors, a high degree of functional similarity was observed among the three datasets. Tamoxifen resistant tumors displayed enriched expression of genes related to cell cycle and proliferation, as well as elevated activity of E2F transcription factors, and were highly correlated with a Luminal intrinsic subtype. A number of small molecules, including phenothiazines, were found that induced a gene signature in breast cancer cell lines opposite to that found in tamoxifen resistant vs. sensitive tumors and the ability of phenothiazines to down-regulate cyclin E2 and inhibit proliferation of tamoxifen resistant breast cancer cells was validated. Our findings demonstrate that an integrated bioinformatics approach to analyze gene expression profiles from multiple breast tumor datasets can identify important biological pathways and potentially novel therapeutic options for tamoxifen-resistant breast cancers

    Canine distemper virus persistence in demyelinating encephalitis by swift intracellular cell-to-cell spread in astrocytes is controlled by the viral attachment protein

    Get PDF
    The mechanism of viral persistence, the driving force behind the chronic progression of inflammatory demyelination in canine distemper virus (CDV) infection, is associated with non-cytolytic viral cell-to-cell spread. Here, we studied the molecular mechanisms of viral spread of a recombinant fluorescent protein-expressing virulent CDV in primary canine astrocyte cultures. Time-lapse video microscopy documented that CDV spread was very efficient using cell processes contacting remote target cells. Strikingly, CDV transmission to remote cells could occur in less than 6 h, suggesting that a complete viral cycle with production of extracellular free particles was not essential in enabling CDV to spread in glial cells. Titration experiments and electron microscopy confirmed a very low CDV particle production despite higher titers of membrane-associated viruses. Interestingly, confocal laser microscopy and lentivirus transduction indicated expression and functionality of the viral fusion machinery, consisting of the viral fusion (F) and attachment (H) glycoproteins, at the cell surface. Importantly, using a single-cycle infectious recombinant H-knockout, H-complemented virus, we demonstrated that H, and thus potentially the viral fusion complex, was necessary to enable CDV spread. Furthermore, since we could not detect CD150/SLAM expression in brain cells, the presence of a yet non-identified glial receptor for CDV was suggested. Altogether, our findings indicate that persistence in CDV infection results from intracellular cell-to-cell transmission requiring the CDV-H protein. Viral transfer, happening selectively at the tip of astrocytic processes, may help the virus to cover long distances in the astroglial network, “outrunning” the host’s immune response in demyelinating plaques, thus continuously eliciting new lesions

    Novel DLX3 variants in amelogenesis imperfecta with attenuated tricho‐dento‐osseous syndrome

    Get PDF
    Objectives: Variants in DLX3 cause tricho‐dento‐osseous syndrome (TDO, MIM #190320), a systemic condition with hair, nail and bony changes, taurodontism and amelogenesis imperfecta (AI), inherited in an autosomal dominant fashion. Different variants found within this gene are associated with different phenotypic presentations. To date, six different DLX3 variants have been reported in TDO. The aim of this paper was to explore and discuss three recently uncovered new variants in DLX3. Subjects and Methods: Whole‐exome sequencing identified a new DLX3 variant in one family, recruited as part of an ongoing study of genetic variants associated with AI. Targeted clinical exome sequencing of two further families revealed another new variant of DLX3 and complete heterozygous deletion of DLX3. For all three families, the phenotypes were shown to consist of AI and taurodontism, together with other attenuated features of TDO. Results: c.574delG p.(E192Rfs*66), c.476G>T (p.R159L) and a heterozygous deletion of the entire DLX3 coding region were identified in our families. Conclusion: These previously unreported variants add to the growing literature surrounding AI, allowing for more accurate genetic testing and better understanding of the associated clinical consequences

    Computational Fitness Landscape for All Gene-Order Permutations of an RNA Virus

    Get PDF
    How does the growth of a virus depend on the linear arrangement of genes in its genome? Answering this question may enhance our basic understanding of virus evolution and advance applications of viruses as live attenuated vaccines, gene-therapy vectors, or anti-tumor therapeutics. We used a mathematical model for vesicular stomatitis virus (VSV), a prototype RNA virus that encodes five genes (N-P-M-G-L), to simulate the intracellular growth of all 120 possible gene-order variants. Simulated yields of virus infection varied by 6,000-fold and were found to be most sensitive to gene-order permutations that increased levels of the L gene transcript or reduced levels of the N gene transcript, the lowest and highest expressed genes of the wild-type virus, respectively. Effects of gene order on virus growth also depended upon the host-cell environment, reflecting different resources for protein synthesis and different cell susceptibilities to infection. Moreover, by computationally deleting intergenic attenuations, which define a key mechanism of transcriptional regulation in VSV, the variation in growth associated with the 120 gene-order variants was drastically narrowed from 6,000- to 20-fold, and many variants produced higher progeny yields than wild-type. These results suggest that regulation by intergenic attenuation preceded or co-evolved with the fixation of the wild type gene order in the evolution of VSV. In summary, our models have begun to reveal how gene functions, gene regulation, and genomic organization of viruses interact with their host environments to define processes of viral growth and evolution

    Uncovering treatment burden as a key concept for stroke care: a systematic review of qualitative research

    Get PDF
    <b>Background</b> Patients with chronic disease may experience complicated management plans requiring significant personal investment. This has been termed ‘treatment burden’ and has been associated with unfavourable outcomes. The aim of this systematic review is to examine the qualitative literature on treatment burden in stroke from the patient perspective.<p></p> <b>Methods and findings</b> The search strategy centred on: stroke, treatment burden, patient experience, and qualitative methods. We searched: Scopus, CINAHL, Embase, Medline, and PsycINFO. We tracked references, footnotes, and citations. Restrictions included: English language, date of publication January 2000 until February 2013. Two reviewers independently carried out the following: paper screening, data extraction, and data analysis. Data were analysed using framework synthesis, as informed by Normalization Process Theory. Sixty-nine papers were included. Treatment burden includes: (1) making sense of stroke management and planning care, (2) interacting with others, (3) enacting management strategies, and (4) reflecting on management. Health care is fragmented, with poor communication between patient and health care providers. Patients report inadequate information provision. Inpatient care is unsatisfactory, with a perceived lack of empathy from professionals and a shortage of stimulating activities on the ward. Discharge services are poorly coordinated, and accessing health and social care in the community is difficult. The study has potential limitations because it was restricted to studies published in English only and data from low-income countries were scarce.<p></p> <b>Conclusions</b> Stroke management is extremely demanding for patients, and treatment burden is influenced by micro and macro organisation of health services. Knowledge deficits mean patients are ill equipped to organise their care and develop coping strategies, making adherence less likely. There is a need to transform the approach to care provision so that services are configured to prioritise patient needs rather than those of health care systems

    Biological variation of measured and estimated glomerular filtration rate in patients with chronic kidney disease

    Get PDF
    When assessing changes in glomerular filtration rate (GFR) it is important to differentiate pathological change from intrinsic biological and analytical variation. GFR is measured using complex reference methods (e.g. iohexol clearance). In clinical practice measurement of creatinine and cystatin C is used in equations (e.g. Modification of Diet in Renal Disease [MDRD] or Chronic Kidney Disease Epidemiology Collaboration [CKD-EPI]) to provide estimated GFR. We studied biological variability of measured and estimated GFR in twenty nephrology outpatients (10 male, 10 female; median age 71, range 50-80 years) with moderate CKD (GFR 30-59 mL/min/1.73 m2). Patients underwent weekly GFR measurement by iohexol clearance over four consecutive weeks. Simultaneously GFR was estimated using the MDRD, CKD-EPIcreatinine, CKD-EPIcystatinC and CKD-EPIcreatinine+cystatinC equations. Within-subject biological variation (CVI) expressed as a percentage [95% CI] for the MDRD (5.0% [4.3-6.1]), CKD-EPIcreatinine (5.3% [4.5-6.4]), CKD-EPIcystatinC (5.3% [4.5-6.5]), and CKD-EPIcreatinine+cystatinC (5.0% [4.3-6.2]) equations were broadly equivalent. CVI values for MDRD and CKD- EPIcreatinine+cystatinC were lower (p=0.027 and p=0.022 respectively) than that of measured GFR (6.7% [5.6-8.2]). Reference change values (RCV), the point at which a true change in a biomarker in an individual can be inferred to have occurred with 95% probability were calculated: using the MDRD equation, positive and negative RCVs were 15.1% and 13.1% respectively. If an individual’s baseline MDRD estimated GFR (mL/min/1.73 m2) was 59, significant increases or decreases would be to values >68 or <51 respectively. Within-subject variability of estimated GFR is lower than measured GFR. RCVs can be used to understand GFR changes in clinical practice

    Structural and Mechanistic Studies of Measles Virus Illuminate Paramyxovirus Entry

    Get PDF
    Measles virus (MeV), a member of the paramyxovirus family of enveloped RNA viruses and one of the most infectious viral pathogens identified, accounts for major pediatric morbidity and mortality worldwide although coordinated efforts to achieve global measles control are in place. Target cell entry is mediated by two viral envelope glycoproteins, the attachment (H) and fusion (F) proteins, which form a complex that achieves merger of the envelope with target cell membranes. Despite continually expanding knowledge of the entry strategies employed by enveloped viruses, our molecular insight into the organization of functional paramyxovirus fusion complexes and the mechanisms by which the receptor binding by the attachment protein triggers the required conformational rearrangements of the fusion protein remain incomplete. Recently reported crystal structures of the MeV attachment protein in complex with its cellular receptors CD46 or SLAM and newly developed functional assays have now illuminated some of the fundamental principles that govern cell entry by this archetype member of the paramyxovirus family. Here, we review these advances in our molecular understanding of MeV entry in the context of diverse entry strategies employed by other members of the paramyxovirus family

    Towards the understanding of microRNA and environmental factor interactions and their relationships to human diseases

    Get PDF
    Increasing studies have shown that the interactions between microRNAs (miRNAs) and environmental factors (EFs) play critical roles in determining phenotypes and diseases. In this study, we revealed a number of important biological insights by analyzing and modeling of miRNA-EF interactions and their relationships with human diseases. We demonstrated that the miRNA signatures of EFs could provide new information on EFs. More importantly, we quantitatively showed that the miRNA signatures of drug/radiation could be used as indicators for evaluating the results of cancer treatments. Finally, we developed a computational model that could efficiently identify the possible relationship between EF and human diseases. Meanwhile, we provided a website (http://cmbi.hsc.pku.edu.cn/miren) for the main results of this study. This study elucidates the mechanisms of EFs, presents a framework for predicting the results of cancer treatments, and develops a model that illustrates the relationships between EFs and human diseases

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
    corecore