1,978 research outputs found

    Foraging environment determines the genetic architecture and evolutionary potential of trophic morphology in cichlid fishes

    Get PDF
    Phenotypic plasticity allows organisms to change their phenotype in response to shifts in the environment. While a central topic in current discussions of evolutionary potential, a comprehensive understanding of the genetic underpinnings of plasticity is lacking in systems undergoing adaptive diversification. Here, we investigate the genetic basis of phenotypic plasticity in a textbook adaptive radiation, Lake Malawi cichlid fishes. Specifically, we crossed two divergent species to generate an F3 hybrid mapping population. At early juvenile stages, hybrid families were split and reared in alternate foraging environments that mimicked benthic/scraping or limnetic/sucking modes of feeding. These alternate treatments produced a variation in morphology that was broadly similar to the major axis of divergence among Malawi cichlids, providing support for the flexible stem theory of adaptive radiation. Next, we found that the genetic architecture of several morphological traits was highly sensitive to the environment. In particular, of 22 significant quantitative trait loci (QTL), only one was shared between the environments. In addition, we identified QTL acting across environments with alternate alleles being differentially sensitive to the environment. Thus, our data suggest that while plasticity is largely determined by loci specific to a given environment, it may also be influenced by loci operating across environments. Finally, our mapping data provide evidence for the evolution of plasticity via genetic assimilation at an important regulatory locus, ptch1. In all, our data address long-standing discussions about the genetic basis and evolution of plasticity. They also underscore the importance of the environment in affecting developmental outcomes, genetic architectures, morphological diversity and evolutionary potential

    A Potential Alternative Orodispersible Formulation to Prednisolone Sodium Phosphate Orally Disintegrating Tablets

    Get PDF
    The orally disintegrating tablet (ODT) has shown vast potential as an alternative oral dosage form to conventional tablets wherein they can disintegrate rapidly (≤30 s) upon contact with saliva fluid and should have an acceptable mouthfeel as long as their weight doesn’t exceed 500 mg. However, owing to the bitterness of several active ingredients, there is a need to find a suitable alternative to ODTs that maintains their features and can be taste-masked more simply and inexpensively. Therefore, electrospun nanofibers and solvent-cast oral dispersible films (ODFs) are used in this study as potential OD formulations for prednisolone sodium phosphate (PSP) that is commercially available as ODTs. The encapsulation efficiency (EE%) of the ODFs was higher (≈100%) compared to the nanofibers (≈87%), while the disintegration time was considerably faster for the electrospun nanofibers (≈30 s) than the solvent-cast ODFs (≈700 s). Hence, accelerated release rate of PSP from the nanofibers was obtained, due to their higher surface area and characteristic surface morphology that permitted higher wettability and thus, faster erosion. Taste-assessment study using the electronic-tongue quantified the bitterness threshold of the drug and its aversiveness concentration (2.79 mM). Therefore, a taste-masking strategy would be useful when further formulating PSP as an OD formulation

    In vitro and in vivo biological assessment of dual drug-loaded coaxial nanofibers for the treatment of corneal abrasion

    Get PDF
    The treatment of corneal abrasion currently involves the topical administration of antibiotics, with moxifloxacin HCl (0.5% w/v) eye drops being one of the most widely used treatments. Our previous work (Tawfik et al., 2020) involved the development of coaxial poly-lactic-co-glycolic acid (PLGA) and polyvinylpyrrolidone (PVP) nanofibers loaded with the antibiotic moxifloxacin HCl and the anti-scarring agent pirfenidone in the core (PVP) and shell (PLGA) respectively, with a view to the system comprising an ocular insert for the combination therapy of corneal abrasion. In this study, we examine the antimicrobial, anti-scarring and pharmacokinetic properties of the fibers alongside consideration of their toxicity and propensity for irritation. Minimum inhibitory concentration and zone of inhibition studies against S. aureus and P. aeruginosa were performed, while fibroblast cell viability and α-smooth muscle actin (α-SMA, a biomarker for scar formation) were measured using MTT and Western Blot assays, respectively. Pharmacokinetic studies and efficacy against infection were performed using a rabbit model, while ocular irritancy was assessed using the Draize test. The studies demonstrated that the antimicrobial activity of the moxifloxacin HCl was preserved following encapsulation into the nanofibers, while the downregulation of α-SMA was demonstrated using concentrations below the IC20 values (concentration required to decrease corneal fibroblast viability by no more than 20%). The pharmacokinetic study showed retention and sustained release of the moxifloxacin HCl over a 24-hour period, in contrast to equivalent eye drops which required four times daily dosing. Evidence of low level (according to the MMTS scale) irritation was detected for the nanofiber systems. Overall, the study has demonstrated that the dual drug-loaded nanofiber system shows potential for once daily dosing as an ocular insert for the treatment of corneal abrasion

    Development and formative evaluation of the e-Health implementation toolkit

    Get PDF
    <b>Background</b> The use of Information and Communication Technology (ICT) or e-Health is seen as essential for a modern, cost-effective health service. However, there are well documented problems with implementation of e-Health initiatives, despite the existence of a great deal of research into how best to implement e-Health (an example of the gap between research and practice). This paper reports on the development and formative evaluation of an e-Health Implementation Toolkit (e-HIT) which aims to summarise and synthesise new and existing research on implementation of e-Health initiatives, and present it to senior managers in a user-friendly format.<p></p> <b>Results</b> The content of the e-HIT was derived by combining data from a systematic review of reviews of barriers and facilitators to implementation of e-Health initiatives with qualitative data derived from interviews of "implementers", that is people who had been charged with implementing an e-Health initiative. These data were summarised, synthesised and combined with the constructs from the Normalisation Process Model. The software for the toolkit was developed by a commercial company (RocketScience). Formative evaluation was undertaken by obtaining user feedback. There are three components to the toolkit - a section on background and instructions for use aimed at novice users; the toolkit itself; and the report generated by completing the toolkit. It is available to download from http://www.ucl.ac.uk/pcph/research/ehealth/documents/e-HIT.xls<p></p> <b>Conclusions</b> The e-HIT shows potential as a tool for enhancing future e-Health implementations. Further work is needed to make it fully web-enabled, and to determine its predictive potential for future implementations

    Use of domesticated pigs by Mesolithic hunter-gatherers in northwestern Europe

    Get PDF
    Acknowledgements We thank the Archaeological State Museum Schleswig-Holstein, the Archaeological State Offices of Brandenburg, Lower Saxony and Saxony and the following individuals who provided sample material: Betty Arndt, Jo¨rg Ewersen, Frederick Feulner, Susanne Hanik, Ru¨diger Krause, Jochen Reinhard, Uwe Reuter, Karl-Heinz Ro¨hrig, Maguerita Scha¨fer, Jo¨rg Schibler, Reinhold Schoon, Regina Smolnik, Thomas Terberger and Ingrid Ulbricht. We are grateful to Ulrich Schmo¨lcke, Michael Forster, Peter Forster and Aikaterini Glykou for their support and comments on the manuscript. We also thank many institutions and individuals that provided sample material and access to collections, especially the curators of the Museum fu¨r Naturkunde, Berlin; Muse´um National d0 Histoire Naturelle, Paris; Smithsonian Institution, National Museum of Natural History, Washington D.C.; Zoologische Staatssammlung, Mu¨nchen; Museum fu¨r Haustierkunde, Halle; the American Museum of Natural History, New-York. This work was funded by the Graduate School ‘Human Development in Landscapes’ at Kiel University (CAU) and supported by NERC project Grant NE/F003382/1. Radiocarbon dating was carried out at the Leibniz Laboratory, CAU. This work is licensed under a Creative Commons AttributionNonCommercial-NoDerivs 3.0 Unported License.Peer reviewedPublisher PD

    Declining Burden of Malaria Over two Decades in a Rural Community of Muheza District, North-Eastern Tanzania.

    Get PDF
    The recently reported declining burden of malaria in some African countries has been attributed to scaling-up of different interventions although in some areas, these changes started before implementation of major interventions. This study assessed the long-term trends of malaria burden for 20 years (1992--2012) in Magoda and for 15 years in Mpapayu village of Muheza district, north-eastern Tanzania, in relation to different interventions as well as changing national malaria control policies.\ud Repeated cross-sectional surveys recruited individuals aged 0 -- 19 years from the two villages whereby blood smears were collected for detection of malaria parasites by microscopy. Prevalence of Plasmodium falciparum infections and other indices of malaria burden (prevalence of anaemia, splenomegaly and gametocytes) were compared across the years and between the study villages. Major interventions deployed including mobile clinic, bed nets and other research activities, and changes in national malaria control policies were also marked. In Magoda, the prevalence of P. falciparum infections initially decreased between 1992 and 1996 (from 83.5 to 62.0%), stabilized between 1996 and 1997, and further declined to 34.4% in 2004. A temporary increase between 2004 and 2008 was followed by a progressive decline to 7.2% in 2012, which is more than 10-fold decrease since 1992. In Mpapayu (from 1998), the highest prevalence was 81.5% in 1999 and it decreased to 25% in 2004. After a slight increase in 2008, a steady decline followed, reaching <5% from 2011 onwards. Bed net usage was high in both villages from 1999 to 2004 (>=88%) but it decreased between 2008 and 2012 (range, 28% - 68%). After adjusting for the effects of bed nets, age, fever and year of study, the risk of P. falciparum infections decreased significantly by >=97% in both villages between 1999 and 2012 (p < 0.001). The prevalence of splenomegaly (>40% to <1%) and gametocytes (23% to <1%) also decreased in both villages.Discussion and conclusionsA remarkable decline in the burden of malaria occurred between 1992 and 2012 and the initial decline (1992 -- 2004) was most likely due to deployment of interventions, such as bed nets, and better services through research activities. Apart from changes of drug policies, the steady decline observed from 2008 occurred when bed net coverage was low suggesting that other factors contributed to the most recent pattern. These results suggest that continued monitoring is required to determine causes of the changing malaria epidemiology and also to monitor the progress towards maintaining low malaria transmission and reaching related millennium development goals
    corecore