48 research outputs found

    Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conventional knee and hip implant systems have been in use for many years with good success. However, the custom design of implant components based on patient-specific anatomy has been attempted to overcome existing shortcomings of current designs. The longevity of cementless implant components is highly dependent on the initial fit between the bone surface and the implant. The bone-implant interface design has historically been limited by the surgical tools and cutting guides available; and the cost of fabricating custom-designed implant components has been prohibitive.</p> <p>Methods</p> <p>This paper describes an approach where the custom design is based on a Computed Tomography scan of the patient's joint. The proposed design will customize both the articulating surface and the bone-implant interface to address the most common problems found with conventional knee-implant components. Finite Element Analysis is used to evaluate and compare the proposed design of a custom femoral component with a conventional design.</p> <p>Results</p> <p>The proposed design shows a more even stress distribution on the bone-implant interface surface, which will reduce the uneven bone remodeling that can lead to premature loosening.</p> <p>Conclusion</p> <p>The proposed custom femoral component design has the following advantages compared with a conventional femoral component. (i) Since the articulating surface closely mimics the shape of the distal femur, there is no need for resurfacing of the patella or gait change. (ii) Owing to the resulting stress distribution, bone remodeling is even and the risk of premature loosening might be reduced. (iii) Because the bone-implant interface can accommodate anatomical abnormalities at the distal femur, the need for surgical interventions and fitting of filler components is reduced. (iv) Given that the bone-implant interface is customized, about 40% less bone must be removed. The primary disadvantages are the time and cost required for the design and the possible need for a surgical robot to perform the bone resection. Some of these disadvantages may be eliminated by the use of rapid prototyping technologies, especially the use of Electron Beam Melting technology for quick and economical fabrication of custom implant components.</p

    An ethnographic study of Latino preschool children's oral health in rural California: Intersections among family, community, provider and regulatory sectors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Latino children experience a higher prevalence of caries than do children in any other racial/ethnic group in the US. This paper examines the intersections among four societal sectors or contexts of care which contribute to oral health disparities for low-income, preschool Latino<sup>1 </sup>children in rural California.</p> <p>Methods</p> <p>Findings are reported from an ethnographic investigation, conducted in 2005–2006, of family, community, professional/dental and policy/regulatory sectors or contexts of care that play central roles in creating or sustaining low income, rural children's poor oral health status. The study community of around 9,000 people, predominantly of Mexican-American origin, was located in California's agricultural Central Valley. Observations in homes, community facilities, and dental offices within the region were supplemented by in-depth interviews with 30 key informants (such as dental professionals, health educators, child welfare agents, clinic administrators and regulatory agents) and 47 primary caregivers (mothers) of children at least one of whom was under 6 years of age.</p> <p>Results</p> <p>Caregivers did not always recognize visible signs of caries among their children, nor respond quickly unless children also complained of pain. Fluctuating seasonal eligibility for public health insurance intersected with limited community infrastructure and civic amenities, including lack of public transportation, to create difficulties in access to care. The non-fluoridated municipal water supply is not widely consumed because of fears about pesticide pollution. If the dentist brought children into the clinic for multiple visits, this caused the accompanying parent hardship and occasionally resulted in the loss of his or her job. Few general dentists had received specific training in how to handle young patients. Children's dental fear and poor provider-parent communication were exacerbated by a scarcity of dentists willing to serve rural low-income populations. Stringent state fiscal reimbursement policies further complicated the situation.</p> <p>Conclusion</p> <p>Several societal sectors or contexts of care significantly intersected to produce or sustain poor oral health care for children. Parental beliefs and practices, leading for example to delay in seeking care, were compounded by lack of key community or economic resources, and the organization and delivery of professional dental services. In the context of state-mandated policies and procedures, these all worked to militate against children receiving timely care that would considerably reduce oral health disparities among this highly disadvantaged population.</p

    Evidence for widespread hydrated minerals on asteroid (101955) Bennu

    Get PDF
    Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 µm and thermal infrared spectral features that are most similar to those of aqueously altered CM-type carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of metres observed to date. In the visible and near-infrared (0.4 to 2.4 µm) Bennu’s spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth

    The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements

    Get PDF
    The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu’s surface has been most recently migrating towards its equator (given Bennu’s increasing spin rate), we infer that Bennu’s surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennu’s top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennu’s top-shape morphology and its link to the formation of binary asteroids

    Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction

    Get PDF
    The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. </p
    corecore