17 research outputs found
Ensemble perturbation smoother for optimizing tidal boundary conditions by assimilation of High-Frequency radar surface currents - application to the German Bight
High-Frequency (HF) radars measure the ocean surface currents at various spatial and temporal scales. These include tidal currents, wind-driven circulation, density-driven circulation and Stokes drift. Sequential assimilation methods updating the model state have been proven successful to correct the density-driven currents by assimilation of observations such as sea surface height, sea surface temperature and in-situ profiles. However, the situation is different for tides in coastal models since these are not generated within the domain, but are rather propagated inside the domain through the boundary conditions. For improving the modeled tidal variability it is therefore not sufficient to update the model state via data assimilation without updating the boundary conditions. The optimization of boundary conditions to match observations inside the domain is traditionally achieved through variational assimilation methods. In this work we present an ensemble smoother to improve the tidal boundary values so that the model represents more closely the observed currents. To create an ensemble of dynamically realistic boundary conditions, a cost function is formulated which is directly related to the probability of each boundary condition perturbation. This cost function ensures that the boundary condition perturbations are spatially smooth and that the structure of the perturbations satisfies approximately the harmonic linearized shallow water equations. Based on those perturbations an ensemble simulation is carried out using the full three-dimensional General Estuarine Ocean Model (GETM). Optimized boundary values are obtained by assimilating all observations using the co-variances of the ensemble simulation
FORTE satellite constraints on ultra-high energy cosmic particle fluxes
The FORTE (Fast On-orbit Recording of Transient Events) satellite records
bursts of electromagnetic waves arising from near the Earth's surface in the
radio frequency (RF) range of 30 to 300 MHz with a dual polarization antenna.
We investigate the possible RF signature of ultra-high energy cosmic-ray
particles in the form of coherent Cherenkov radiation from cascades in ice. We
calculate the sensitivity of the FORTE satellite to ultra-high energy (UHE)
neutrino fluxes at different energies beyond the Greisen-Zatsepin-Kuzmin (GZK)
cutoff. Some constraints on supersymmetry model parameters are also estimated
due to the limits that FORTE sets on the UHE neutralino flux. The FORTE
database consists of over 4 million recorded events to date, including in
principle some events associated with UHE neutrinos. We search for candidate
FORTE events in the period from September 1997 to December 1999. The candidate
production mechanism is via coherent VHF radiation from a UHE neutrino shower
in the Greenland ice sheet. We demonstrate a high efficiency for selection
against lightning and anthropogenic backgrounds. A single candidate out of
several thousand raw triggers survives all cuts, and we set limits on the
corresponding particle fluxes assuming this event represents our background
level.Comment: added a table, updated references and Figure 8, this version is
submitted to Phys. Rev.
Balloon Measurements of Cosmic Ray Muon Spectra in the Atmosphere along with those of Primary Protons and Helium Nuclei over Mid-Latitude
We report here the measurements of the energy spectra of atmospheric muons
and of the cosmic ray primary proton and helium nuclei in a single experiment.
These were carried out using the MASS superconducting spectrometer in a balloon
flight experiment in 1991. The relevance of these results to the atmospheric
neutrino anomaly is emphasized. In particular, this approach allows
uncertainties caused by the level of solar modulation, the geomagnetic cut-off
of the primaries and possible experimental systematics to be decoupled in the
comparison of calculated fluxes of muons to measured muon fluxes. The muon
observations cover the momentum and depth ranges of 0.3-40 GeV/c and 5-886
g/cmsquared, respectively. The proton and helium primary measurements cover the
rigidity range from 3 to 100 GV, in which both the solar modulation and the
geomagnetic cut-off affect the energy spectra at low energies.Comment: 31 pages, including 17 figures, simplified apparatus figure, to
appear in Phys. Rev.
Recommended from our members
Energetic particle influence on the Earth's atmosphere
This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally
galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere
are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth’s atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere
Temporal and Spatial Patterns of Sea Level in Inland Basins: Recent Events in the Aral Sea
We demonstrate in this paper that satellite altimeter data resolve the drop in the Aral Sea level during 1993-2000 of about 0.6 m per year resulting in a change of surface area from 35000 to 22000 km2 and volume from 270 to 130 km3. The sudden drop in the sea level of the Northern basin on 04.21.1999 resulting from dam break-up is also clearly resolved. The temporal and spatial variability of sea level reveals response patterns which are characteristic for friction dominated shallow sea dynamics. The combination of salinity and sea-level data enables to identify the major events of environmental transition, which are associated with the temporal variability in the total salt content: (1) a peak in 1993-1994, and (2) an increasing trend in the last decade. These events are indicative of an increase in the discharge of ground water, but could also reveal overestimated salinity estimates from recent observations.JRC.H.5-Land Resources Managemen
Correcting surface winds by assimilating high-frequency radar surface currents in the German Bight
Surface winds are crucial for accurately modeling the surface circulation in the coastal ocean. In the present work, high-frequency radar surface currents are assimilated using an ensemble scheme which aims to obtain improved surface winds taking into account European Centre for Medium-Range Weather Forecasts winds as a first guess and surface current measurements. The objective of this study is to show that wind forcing can be improved using an approach similar to parameter estimation in ensemble data assimilation. Like variational assimilation schemes, the method provides an improved wind field based on surface current measurements. However, the technique does not require an adjoint, and it is thus easier to implement. In addition, it does not rely on a linearization of the model dynamics. The method is validated directly by comparing the analyzed wind speed to independent in situ measurements and indirectly by assessing the impact of the corrected winds on model sea surface temperature (SST) relative to satellite SST
Coastal–open Ocean Exchange in the Black Sea: Observations and Modelling
The interaction between physical and biological processes in the areas of continental margins governs the variability of ecosystems. The complexity of processes in these areas requires detailed studies combining modelling and surveying efforts. One promising step in this direction was undertaken in the framework of the EROS 21 project, focusing on the shelf part of the north-western Black Sea. In the present paper, we focus on the results of physical studies aiming to improve the understanding of the fundamental exchange processes in the ocean margins, as well as to quantify some of them in the Black Sea. We illustrate the capabilities of circulation models to reproduce physical processes with different time- and space-scales: coastal waves, internal waves, baroclinic Rossby and topographic waves. Another class of important phenomena in the coastal zone is associated with convection. Sources at the sea surface and in the outflow areas give rise to plume dynamics that play a crucial role in the vertical mixing and provide the mechanism for water-mass formation. Most of the results are illustrated for the shelf part of the Black Sea. The verification of simulations is performed by comparison with survey data, altimeter data from the Topex/Poseidon mission and radiotracer observations. The latter, in combination with simulations from circulation models, are used to trace the penetration of tracers into the intermediate and deep layers. We show that although most 90Sr is introduced by river runoff, large amounts of this signal penetrate the halocline in the Bosphorus Straits area and along the southern coast. Another important fraction of the river water penetrates the intermediate layers at the shelf edge in the north-western Black Sea.info:eu-repo/semantics/publishe
Untersuchungen zum Zusammenhang zwischen Motorparametern und Abgasemissionen von Dieselmotoren beim Einsatz von unterschiedlichen Brennstoffen Abschlussbericht
Available from TIB Hannover: RA 1581(621) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEBundesministerium fuer Wirtschaft, Bonn (Germany); Arbeitsgemeinschaft Industrieller Forschungsvereinigungen e.V., Koeln (Germany)DEGerman