35 research outputs found

    Circumstellar interaction in supernovae in dense environments - an observational perspective

    Full text link
    In a supernova explosion, the ejecta interacting with the surrounding circumstellar medium (CSM) give rise to variety of radiation. Since CSM is created from the mass lost from the progenitor star, it carries footprints of the late time evolution of the star. This is one of the unique ways to get a handle on the nature of the progenitor star system. Here, I will focus mainly on the supernovae (SNe) exploding in dense environments, a.k.a. Type IIn SNe. Radio and X-ray emission from this class of SNe have revealed important modifications in their radiation properties, due to the presence of high density CSM. Forward shock dominance of the X-ray emission, internal free-free absorption of the radio emission, episodic or non-steady mass loss rate, asymmetry in the explosion seem to be common properties of this class of SNe.Comment: Fixed minor typos. 31 pages, 9 figures, accepted for publication in Space Science Reviews. Chapter in International Space Science Institute (ISSI) Book on "Supernovae" to be published in Space Science Reviews by Springe

    Cosmological distance indicators

    Full text link
    We review three distance measurement techniques beyond the local universe: (1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and (3) HI intensity mapping. We describe the principles and theory behind each method, the ingredients needed for measuring such distances, the current observational results, and future prospects. Time delays from strongly lensed quasars currently provide constraints on H0H_0 with < 4% uncertainty, and with 1% within reach from ongoing surveys and efforts. Recent exciting discoveries of strongly lensed supernovae hold great promise for time-delay cosmography. BAO features have been detected in redshift surveys up to z <~ 0.8 with galaxies and z ~ 2 with Ly-α\alpha forest, providing precise distance measurements and H0H_0 with < 2% uncertainty in flat Λ\LambdaCDM. Future BAO surveys will probe the distance scale with percent-level precision. HI intensity mapping has great potential to map BAO distances at z ~ 0.8 and beyond with precisions of a few percent. The next years ahead will be exciting as various cosmological probes reach 1% uncertainty in determining H0H_0, to assess the current tension in H0H_0 measurements that could indicate new physics.Comment: Review article accepted for publication in Space Science Reviews (Springer), 45 pages, 10 figures. Chapter of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Ag

    Minutes-duration optical flares with supernova luminosities

    Get PDF
    In recent years, certain luminous extragalactic optical transients have been observed to last only a few days1. Their short observed duration implies a different powering mechanism from the most common luminous extragalactic transients (supernovae), whose timescale is weeks2. Some short-duration transients, most notably AT2018cow (ref. 3), show blue optical colours and bright radio and X-ray emission4. Several AT2018cow-like transients have shown hints of a long-lived embedded energy source5, such as X-ray variability6,7, prolonged ultraviolet emission8, a tentative X-ray quasiperiodic oscillation9,10 and large energies coupled to fast (but subrelativistic) radio-emitting ejecta11,12. Here we report observations of minutes-duration optical flares in the aftermath of an AT2018cow-like transient, AT2022tsd (the ‘Tasmanian Devil’). The flares occur over a period of months, are highly energetic and are probably nonthermal, implying that they arise from a near-relativistic outflow or jet. Our observations confirm that, in some AT2018cow-like transients, the embedded energy source is a compact object, either a magnetar or an accreting black hole

    Wise Observatory system of fast CCD photometry

    No full text

    SDSS J130623.89-014033.6 is a type-II SN

    No full text
    Item does not contain fulltex

    Mitochondrial swelling is induced by SA treatment and can be inhibited by 3-MA.

    No full text
    <p>Col-0 seedlings were preincubated in 0.5 mM 3-MA or distilled water (control) and subjected to 65 µM SA treatment (in presence or absence of 3-MA). After 1.5 hr of SA treatment, seedlings were stained with MTG and subjected to confocal imaging. <b>A</b>. The size of mitochondria expressed as the mean cross section area of individual MTG signal on the confocal microscopy image is presented. Typically, 3 seedlings, 2 root hairs per seedling were analyzed for each treatment and size of 10 mitochondria was measured per image (per root hair). Differences between the groups were evaluated by one way ANOVA and Tukey-Kramer multiple comparison test. Means with the same letter are not significantly different from each other. B. Typical images of root hair mitochondria, bar is 2.5 µm. The experiment was repeated twice with similar results.</p

    Census of R Coronae Borealis Stars. I. Infrared Light Curves from Palomar Gattini IR

    Get PDF
    We are undertaking the first systematic infrared (IR) census of R Coronae Borealis (RCB) stars in the Milky Way, beginning with IR light curves from the Palomar Gattini IR (PGIR) survey. The PGIR is a 30 cm J-band telescope with a 25 deg2 camera that is surveying 18,000 deg2 of the northern sky (δ > -28°) at a cadence of 2 days. We present PGIR light curves for 922 RCB candidates selected from a mid-IR color-based catalog. Of these 922, 149 are promising RCB candidates, as they show pulsations or declines similar to RCB stars. The majority of the candidates that are not RCB stars are either long-period variables (LPVs) or RV Tauri stars. We identify IR color-based criteria to better distinguish between RCB stars and LPVs. As part of a pilot spectroscopic run, we obtain NIR spectra for 26 of the 149 promising candidates and spectroscopically confirm 11 new RCB stars. We detect strong He i λ10830 features in the spectra of all RCB stars, likely originating within high-velocity (200-400 km s-1) winds in their atmospheres. Nine of these RCB stars show 12C16O and 12C18O molecular absorption features, suggesting that they are formed through a white dwarf merger. We detect quasiperiodic pulsations in the light curves of five RCB stars. The periods range between 30 and 125 days and likely originate from the strange-mode instability in these stars. Our pilot run results motivate a dedicated IR spectroscopic campaign to classify all RCB candidates. © 2021. The American Astronomical Society. All rights reserved.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Type IIn supernova photometry

    No full text
    The evolution of a Type IIn supernova (SN IIn) is governed by the interaction between the SN ejecta and a hydrogen-rich circumstellar medium. The SNe IIn thus allow us to probe the late-time mass-loss history of their progenitor stars. We present a sample of SNe IIn from the untargeted, magnitude-limited surveys of the Palomar Transient Factory (PTF) and its successor, the intermediate PTF (iPTF). To date, statistics on SN IIn optical light-curve properties have generally been based on small (&#xE02E;10 SNe) samples from targeted SN surveys. The SNe IIn found and followed by the PTF/iPTF were used to select a sample of 42 events with useful constraints on the rise times as well as with available post-peak photometry. The sample SNe were discovered in 2009&#x2212;2016 and have at least one low-resolution classification spectrum, as well as photometry from the P48 and P60 telescopes at Palomar Observatory. We study the light-curve properties of these SNe IIn using spline fits (for the peak and the declining portion) and template matching (for the rising portion). We study the peak-magnitude distribution, rise times, decline rates, colour evolution, host galaxies, and K-corrections of the SNe in our sample. We find that the typical rise times are divided into fast and slow risers at 20 &#x00B1; 6 d and 50 &#x00B1; 11 d, respectively. The decline rates are possibly divided into two clusters (with slopes 0.013 &#x00B1; 0.006 mag d&#x2212;1 and 0.040 &#x00B1; 0.010 mag d&#x2212;1), but this division has weak statistical significance. We find no significant correlation between the peak luminosity of SNe IIn and their rise times, but the more luminous SNe IIn are generally found to be more long-lasting. Slowly rising SNe IIn are generally found to decline slowly. The SNe in our sample were hosted by galaxies of absolute magnitude &#x2212;22 &#xE02E; Mg &#xE02E; &#x2212;13 mag. The K-corrections at light-curve peak of the SNe IIn in our sample are found to be within 0.2 mag for the observer&#x2019;s frame r-band, for SNe at redshifts z &lt; 0.25. By applying K-corrections and also including ostensibly &#x201C;superluminous&#x201D; SNe IIn, we find that the peak magnitudes are Mr conclude that the occurrence of conspicuous light-curve bumps in SNe IIn, such as in iPTF13z, are limited to 1.4+14.6 investigate a possible sub-type of SNe IIn with a fast rise to a &#xE026;50 d plateau followed by a slow, linear decline
    corecore