279 research outputs found

    Methanol oxidation on Fe2O3catalysts and the effects of surface Mo

    Get PDF
    The adsorption of methanol on haematite has been investigated using temperature programmed methods, combined with in situ DRIFTS. Model catalysts based on this material have then been made with a shell–core configuration of molybdenum oxide monolayers on top of the haematite core. These are used as models of industrial iron molybdate catalysts, used to selectively oxidise methanol to formaldehyde, one of the major chemical outlets for methanol. Haematite itself is completely ineffective in this respect since it oxidises it to CO2 and the DRIFTS shows that this occurs by oxidation of methoxy to formate at around 200 °C. The decomposition behaviour is affected by the absence or presence of oxygen in the gas phase; oxygen destabilises the methoxy and enhances formate production. In contrast, when a monolayer of molybdena is placed onto the surface by incipient wetness, and it remains there after calcination, the pathway to formate production is blocked and formaldehyde is the main gas phase product in TPD after methanol dosing

    Thermal Decomposition of an Impure (Roxbury) Siderite: Relevance to the Presence of Chemically Pure Magnetite Crystals in ALH84001 Carbonate Disks

    Get PDF
    The question of the origin of nanophase magnetite in Martian meteorite ALH84001 has been widely debated for nearly a decade. Golden et al. have reported producing nearly chemically pure magnetite from thermal decomposition of chemically impure siderite [(Fe, Mg, Mn)CO3]. This claim is significant for three reasons: first, it has been argued that chemically pure magnetite present in the carbonate disks in Martian meteorite ALH84001 could have formed by the thermal decomposition of the impure carbonate matrix in which they are embedded; second, the chemical purity of magnetite has been previously used to identify biogenic magnetite; and, third, previous studies of thermal decomposition of impure (Mg,Ca,Mn)-siderites, which have been investigated under a wide variety of conditions by numerous researchers, invariably yields a mixed metal oxide phase as the product and not chemically pure magnetite. The explanation for this observation is that these siderites all possess the same crystallographic structure (Calcite; R3c) so solid solutions between these carbonates are readily formed and can be viewed on an atomic scale as two chemically different but structurally similar lattices

    L-VRAP-a lunar volatile resources analysis package for lunar exploration

    Get PDF
    The Lunar Volatile Resources Analysis Package (L-VRAP) has been conceived to deliver some of the objectives of the proposed Lunar Lander mission currently being studied by the European Space Agency. The purpose of the mission is to demonstrate and develop capability; the impetus is very much driven by a desire to lay the foundations for future human exploration of the Moon. Thus, LVRAP has design goals that consider lunar volatiles from the perspective of both their innate scientific interest and also their potential for in situ utilisation as a resource. The device is a dual mass spectrometer system and is capable of meeting the requirements of the mission with respect to detection, quantification and characterisation of volatiles. Through the use of appropriate sampling techniques, volatiles from either the regolith or atmosphere (exosphere) can be analysed. Furthermore, since L-VRAP has the capacity to determine isotopic compositions, it should be possible for the instrument to determine the sources of the volatiles that are found on the Moon (be they lunar per se, extra-lunar, or contaminants imparted by the mission itself

    Kinematic modelling of the Milky Way using the RAVE and GCS stellar surveys

    Get PDF
    We investigate the kinematic parameters of the Milky Way disc using the RAVE and GCS stellar surveys. We do this by fitting a kinematic model to the data taking the selection function of the data into account. For stars in the GCS we use all phase-space coordinates, but for RAVE stars we use only (l,b,vlos)(l,b,v_{\rm los}). Using MCMC technique, we investigate the full posterior distributions of the parameters given the data. We investigate the `age-velocity dispersion' relation for the three kinematic components (σR,σϕ,σz\sigma_R,\sigma_{\phi},\sigma_z), the radial dependence of the velocity dispersions, the Solar peculiar motion (U,V,WU_{\odot},V_{\odot}, W_{\odot} ), the circular speed Θ0\Theta_0 at the Sun and the fall of mean azimuthal motion with height above the mid-plane. We confirm that the Besan\c{c}on-style Gaussian model accurately fits the GCS data, but fails to match the details of the more spatially extended RAVE survey. In particular, the Shu distribution function (DF) handles non-circular orbits more accurately and provides a better fit to the kinematic data. The Gaussian distribution function not only fits the data poorly but systematically underestimates the fall of velocity dispersion with radius. We find that correlations exist between a number of parameters, which highlights the importance of doing joint fits. The large size of the RAVE survey, allows us to get precise values for most parameters. However, large systematic uncertainties remain, especially in VV_{\odot} and Θ0\Theta_0. We find that, for an extended sample of stars, Θ0\Theta_0 is underestimated by as much as 10%10\% if the vertical dependence of the mean azimuthal motion is neglected. Using a simple model for vertical dependence of kinematics, we find that it is possible to match the Sgr A* proper motion without any need for VV_{\odot} being larger than that estimated locally by surveys like GCS.Comment: 27 pages, 13 figures, accepted for publication in Ap

    The RAVE survey: the Galactic escape speed and the mass of the Milky Way

    Get PDF
    We construct new estimates on the Galactic escape speed at various Galactocentric radii using the latest data release of the Radial Velocity Experiment (RAVE DR4). Compared to previous studies we have a database larger by a factor of 10 as well as reliable distance estimates for almost all stars. Our analysis is based on the statistical analysis of a rigorously selected sample of 90 high-velocity halo stars from RAVE and a previously published data set. We calibrate and extensively test our method using a suite of cosmological simulations of the formation of Milky Way-sized galaxies. Our best estimate of the local Galactic escape speed, which we define as the minimum speed required to reach three virial radii R340R_{340}, is 53341+54533^{+54}_{-41} km/s (90% confidence) with an additional 5% systematic uncertainty, where R340R_{340} is the Galactocentric radius encompassing a mean over-density of 340 times the critical density for closure in the Universe. From the escape speed we further derive estimates of the mass of the Galaxy using a simple mass model with two options for the mass profile of the dark matter halo: an unaltered and an adiabatically contracted Navarro, Frenk & White (NFW) sphere. If we fix the local circular velocity the latter profile yields a significantly higher mass than the un-contracted halo, but if we instead use the statistics on halo concentration parameters in large cosmological simulations as a constraint we find very similar masses for both models. Our best estimate for M340M_{340}, the mass interior to R340R_{340} (dark matter and baryons), is 1.30.3+0.4×10121.3^{+0.4}_{-0.3} \times 10^{12} M_\odot (corresponding to M200=1.60.4+0.5×1012M_{200} = 1.6^{+0.5}_{-0.4} \times 10^{12} M_\odot). This estimate is in good agreement with recently published independent mass estimates based on the kinematics of more distant halo stars and the satellite galaxy Leo I.Comment: 16 pages, 15 figures; accepted for publication in Astronomy & Astrophysic

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Procedural and declarative knowledge: an evolutionary perspective

    Get PDF
    It appears that there are resemblances in the organization of memory and the visual system, although the functions of these faculties differ considerably. In this article, the principles behind this organization are discussed. One important principle regards the distinction between declarative and procedural knowledge, between knowing that and knowing how. Declarative knowledge is considered here not as an alternative kind of knowledge, as is usually the case in theories of memory, but as part of procedural knowledge. In our view this leads to another approach with respect to the distinction. Declarative knowledge has occupied more attention in (cognitive) psychological research than can be justified on the basis of the importance of procedural knowledge for behavior. We also discuss the question whether there are other brain faculties that reflect the same organizational characteristics. We conclude with some speculations about the consequent role of consciousness in such a tentative model

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
    corecore