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ABSTRACT

We investigate the kinematic parameters of the Milky Way disk using the Radial Velocity Experiment (RAVE)
and Geneva–Copenhagen Survey (GCS) stellar surveys. We do this by fitting a kinematic model to the data and
taking the selection function of the data into account. For stars in the GCS we use all phase-space coordinates,
but for RAVE stars we use only (�, b, vlos). Using the Markov Chain Monte Carlo technique, we investigate the
full posterior distributions of the parameters given the data. We investigate the age–velocity dispersion relation for
the three kinematic components (σR, σφ, σz), the radial dependence of the velocity dispersions, the solar peculiar
motion (U�, V�,W�), the circular speed Θ0 at the Sun, and the fall of mean azimuthal motion with height above
the midplane. We confirm that the Besançon-style Gaussian model accurately fits the GCS data but fails to match
the details of the more spatially extended RAVE survey. In particular, the Shu distribution function (DF) handles
noncircular orbits more accurately and provides a better fit to the kinematic data. The Gaussian DF not only fits
the data poorly but systematically underestimates the fall of velocity dispersion with radius. The radial scale length
of the velocity dispersion profile of the thick disk was found to be smaller than that of the thin disk. We find
that correlations exist between a number of parameters, which highlights the importance of doing joint fits. The
large size of the RAVE survey allows us to get precise values for most parameters. However, large systematic
uncertainties remain, especially in V� and Θ0. We find that, for an extended sample of stars, Θ0 is underestimated
by as much as 10% if the vertical dependence of the mean azimuthal motion is neglected. Using a simple model
for vertical dependence of kinematics, we find that it is possible to match the Sgr A* proper motion without any
need for V� being larger than that estimated locally by surveys like GCS.

Key words: galaxies: fundamental parameters – galaxies: kinematics and dynamics – methods: data analysis –
methods: numerical – methods: statistical
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1. INTRODUCTION

Understanding the origin and evolution of disk galaxies is
one of the major goals of modern astronomy. The disk is a
prominent feature of late-type galaxies like the Milky Way. As
compared to distant galaxies, for which one can only measure the
gross properties, the Milky Way offers the opportunity to study
the disk in great detail. For the Milky Way, we can determine
six-dimensional (6D) phase-space information, combined with
photometric and stellar parameters, for a huge sample of stars.
This has led to large observational programs to catalog the stars
in the Milky Way in order to compare them with theoretical
models.

The Milky Way stellar system is broadly composed of four
distinct parts, although in reality there is likely to be considerable

overlap between them: the thin disk, the thick disk, the stellar
halo, and the bulge. In this paper, we mainly concentrate on
understanding the disk components, which are the dominant
stellar populations.

In the Milky Way, the thick disk was originally identified
as the second exponential required to fit vertical star counts
(Gilmore & Reid 1983; Reid & Majewski 1993; Jurić et al.
2008). Thick disks are also ubiquitous features of late-type
galaxies (Yoachim & Dalcanton 2006). However, whether the
thick disk is a separate component with a distinct formation
mechanism is highly debatable and a difficult question to answer.

Since the Gilmore & Reid (1983) result, various attempts
have been made to characterize the thick disk. Some studies
suggest that thick-disk stars have distinct properties: they are
old and metal poor (Chiba & Beers 2000) and α enhanced
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(Fuhrmann 1998; Bensby et al. 2005, 2003). Jurić et al. (2008)
fit the Sloan Digital Sky Survey (SDSS) star counts using a
two-component model and find that the thick disk has a larger
scale length than the thin disk. In contrast, Bovy et al. (2012d),
using a much smaller sample of SDSS and SEGUE stars,
find the opposite when they associate the thick disk with the
α-enhanced component. Finally, the idea of a separate thick
disk has recently been challenged. Schönrich & Binney (2009a,
2009b) argued that chemical evolutionary models with radial
migration and mixing can replicate the properties of the thick
disk (see also Loebman et al. 2011, who explore radial mixing
using N-body simulations). Ivezić et al. (2008) do not find the
expected separation between metallicity and kinematics for F
and G stars in SDSS, and Bovy et al. (2012b, 2012c) argue that
the thick disk is a smooth continuation of the thin disk.

Opinions regarding the formation of a thick disk are equally
divided. Various mechanisms have been proposed: accretion of
stars from disrupted galaxies (Abadi et al. 2003), heating of disks
by minor mergers (Quinn et al. 1993; Kazantzidis et al. 2008,
2009; Villalobos & Helmi 2008; Di Matteo et al. 2011), radial
migration of stars (Schönrich & Binney 2009a, 2009b; Loebman
et al. 2011), a gas-rich merger at high redshift (Brook et al.
2004), and gravitationally unstable disk evolution (Bournaud
et al. 2009), inter alia. Recently, Forbes et al. (2012) have
suggested that the thick disk can form without secular heating,
mainly because stars forming at higher redshift had a higher
velocity dispersion. Another possibility, proposed by Roškar
et al. (2010), is misaligned angular momentum of in-falling gas.
How the angular momentum of halo gas becomes misaligned
is described in Sharma et al. (2012). However, Aumer & White
(2013) and Sales et al. (2012) suggest that misaligned gas can
destroy the disks.

The obvious way to test the different thick-disk theories is
to compare the kinematic and chemical abundance distributions
of the thick-disk stars with those of different models. Since the
thin- and thick-disk stars strongly overlap in both space and
kinematics, it is difficult to separate them using just position
and velocity. To really isolate and study the thick disk, one
needs a tag that stays with a star throughout its life. Age is
a possible tag, but it is difficult to get reliable age estimates
of stars. Chemical composition is another promising tag that
can be used, but this requires high-resolution spectroscopy of
a large number of stars. In the near future, surveys such as
GALAH using the HERMES spectrograph (Freeman & Bland-
Hawthorn 2008) and the Gaia–ESO survey using the FLAMES
spectrograph (Gilmore et al. 2012) should be able to fill this
void. In our first analysis, we restrict ourselves to a differential
kinematic study of the disk components. We plan to treat the
more difficult problem of chemodynamics in the future.

The simplest way to describe the kinematics of the Milky
Way stars of the solar neighborhood is by assuming Gaussian
velocity distributions with some predetermined orientation of
the principal axes of the velocity ellipsoid. Then if a single-
component disk is used, only three components of velocity
dispersion and the mean azimuthal velocity vφ need be known. If
a thick disk is included, one requires five additional parameters,
one of them being the fraction of stars in the thick disk. If stars
are sampled from an extended volume and not just the solar
neighborhood, then one needs to specify the radial dependence
of the dispersions.

The velocity dispersion of a disk stellar population is known to
increase with age, so one has to adopt an age–velocity dispersion
relation (AVR). Disks heat because a cold, thin disk occupies

a very small fraction of phase space, and fluctuations in the
gravitational field cause stars to diffuse through phase space
to regions of lower phase-space density. The fluctuations arise
from several sources, including giant molecular clouds (GMCs),
spiral arms, a rotating bar, and halo objects that come close to
the disk. One approach to computing the consequences of these
processes is N-body simulation, but stellar disks are notoriously
tricky to simulate accurately, with the consequence that reliable
simulations are computationally costly. In particular, they are
too costly for it to be feasible to find a simulation that provides
a good fit to a significant body of observational data. Instead,
we characterize the properties of the Milky Way disk by fitting
a suitable analytical formula. The formula summarizes large
amounts of data, but its usefulness extends beyond this. The
formula is traditionally taken to be a power law in age (although
see Edvardsson et al. 1993; Quillen & Garnett 2001; Seabroke
& Gilmore 2007). The exponents βR , βφ , and βz of these
power laws may not be the same for all three components.
The ratio σz/σR and the values of βR , βφ , and βz are useful for
understanding the physical processes responsible for heating the
disk (e.g., Binney 2013; Sellwood 2013).

The first generation of stellar population models character-
ized the density distribution of stars using photometric surveys.
Bahcall & Soneira (1980a, 1980b, 1984) assumed an exponen-
tial disk with magnitude-dependent scale heights. An evolution-
ary model using population synthesis techniques was presented
by Robin & Creze (1986). Given a star formation rate (SFR) and
an initial mass function (IMF), one calculates the resulting stel-
lar populations using theoretical evolutionary tracks. The impor-
tant step forward was that the properties of the disk, like scale
height, density laws, and velocity dispersions were assumed
to be a function of age rather than being color–magnitude-
dependent terms. Bienayme et al. (1987) later introduced dy-
namical self-consistency to link disk scale and vertical velocity
dispersions via the gravitational potential. Haywood et al.
(1997a, 1997b) further improved the constraints on SFR and
IMF of the disk. The present state of the art is described in
Robin et al. (2003) and is known as the Besançon model. Here
the disk is constructed from a set of isothermal populations that
are assumed to be in equilibrium. Analytic functions for the den-
sity distribution, age–metallicity relation (AMR), and IMF are
provided for each population. A similar scheme is also used by
the codes TRILEGAL (Girardi et al. 2005) and Galaxia (Sharma
et al. 2011).

There is a crucial distinction between kinematic and dynam-
ical models. In a kinematic model, one specifies the stellar mo-
tions independently at each spatial location, and the gravitational
field in which the stars move plays no role. In a dynamical model,
the spatial density distribution of stars and their kinematics are
self-consistently linked by the potential, under the assumption
that the system is in steady state. If one has expressions for
three constants of stellar motion as functions of position and
velocity, dynamical models are readily constructed via Jeans’s
theorem. Binney (2012b) provides an algorithm for evaluating
approximate action integrals and has used these to fit dynamical
models to the Geneva–Copenhagen Survey (GCS) data (Binney
2012b). Binney et al. (2014) have confronted the predictions
of the best of these models with Radial Velocity Experiment
(RAVE) data and shown that the model is remarkably, but not
perfectly, successful. Our approach is different in two key re-
spects: we fit kinematic rather than dynamical models, and we
avoid adopting distances to, or using proper motions of, RAVE
stars.
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Large photometric surveys such as DENIS (Epchtein et al.
1999), Two Mass All Sky Survey (2MASS) (Skrutskie
et al. 2006), and SDSS (Abazajian et al. 2009) provide the
underpinning for all Galaxy modeling efforts. SDSS has been
used to provide an empirical model of the Milky Way stars (Jurić
et al. 2008; Ivezić et al. 2008; Bond et al. 2010). The Besançon
model was fitted to the 2MASS star counts, and its photometric
parameters have been more thoroughly tested than its kinematic
parameters because kinematic data for a large number of stars
were not available when the model was constructed.

The Hipparcos satellite (Perryman et al. 1997) and the
UCAC2 catalog (Zacharias et al. 2004) provided proper motions
and parallaxes for ∼105 stars in the solar neighborhood. Dehnen
& Binney (1998b) used the Hipparcos data to study stellar
kinematics as a function of color. They also determined the
solar motion with respect to the local standard of rest (LSR) and
the axial ratios of the velocity ellipsoid. Binney et al. (2000),
also using Hipparcos stars, found the velocity dispersion to
vary with function of age as τ 0.33. More recently, Aumer &
Binney (2009), using data from a new reduction of the Hipparcos
mission, estimated the solar motion and the AVR for all three
velocity components. The AVR is assumed to be a power law
with exponents βR, βφ , and βz for the three velocity components
in the galactocentric cylindrical coordinate system. They found
(βR, βφ, βz) = (0.30, 0.43, 0.44). They also investigated the
SFR and found it to be declining from past to present. However,
a degeneracy exists between the SFR and the slope of the IMF
(Haywood et al. 1997b), and constraining both of them together
is challenging.

The GCS survey (Nordström et al. 2004) combined the
Hipparcos and Tycho-2 (Høg et al. 2000) proper motions with
radial velocity measurements and Strömgren photometry to
create a kinematically unbiased sample of 16,682 F and G
stars in the solar neighborhood. The data contain full 6D
phase-space information along with estimates of ages. The
temperature, metallicity, and ages were further improved by
Holmberg et al. (2007), and distances and kinematics were
improved by Holmberg et al. (2009) using revised Hipparcos
parallaxes. They investigated the AVR and found (βR, βφ, βz) =
(0.39, 0.40, 0.53), which are at odds with Aumer & Binney
(2009). Casagrande et al. (2011) used the infrared flux method
to improve the temperature, metallicity, and age estimates for
the GCS survey. The uncertainty in estimated ages is an ongoing
concern for studies that attempt to derive the AVR directly from
the GCS data.

With the advent of large spectroscopic surveys like RAVE
(Steinmetz et al. 2006) and SDSS/SEGUE (Yanny et al. 2009),
we now have the radial velocity and stellar parameters for a
large number of stars to beyond the solar neighborhood. Bovy
et al. (2012b, 2012c, 2012d) used SDSS/SEGUE to fit the
spatial distributions of mono-abundance populations by double
exponentials. They showed that the vertical velocity dispersion
declines exponentially with radius but varies little in z. Finally,
they argue that the thick disk is a continuation of the thin disk
rather than a separate entity.

The RAVE survey has also been used to study the stellar
kinematics of the Milky Way disk. Pasetto et al. (2012a, 2012b)
study the velocity dispersion and mean motion of the thin and
thick disk stars in the (R, z) plane. They use the technique of
singular value decomposition to compute the moments of the
velocity distribution. Their analysis clearly shows that velocity
dispersions fall as a function of distance from the Galactic center.
Williams et al. (2013) explored the kinematics using red clump

stars from RAVE and found complex structures in velocity
space. A detailed comparison with the prediction from the code
Galaxia was done, taking the selection function of RAVE into
account. The trend of dispersions in the (R, z) plane showed
a good match with the model. However, the mean velocities
showed significant differences. Boeche et al. (2013) studied the
relation between kinematics and the chemical abundances of
stars. By computing stellar orbits, they deduced the maximum
vertical distance zmax and eccentricity e of stars. Next, they
studied the chemical properties of stars by binning them in the
(zmax, e) plane. They found that stars with zmax < 1 kpc and
0.4 < e < 0.6 have two populations with distinct chemical
properties, which hints at radial migration. Binney et al. (2014)
used full 6D information for RAVE stars to fit a Gaussian
model to velocities in the (vR, vz) plane. They studied how the
orientation and shape of the velocity ellipsoid vary with location
in the Galaxy and provided analytic fits to the highly non-
Gaussian distributions of vφ . They also compared the observed
kinematics of stars in different spatial bins with the predictions
of a full dynamical model that had been fitted to the GCS data.

Stellar kinematics allow us to measure the peculiar motion
(U�, V�,W�) of the Sun with respect to the LSR, and also
the speed of the LSR (in other words, the circular speed at
the location of the Sun, Θ0 = vc(R0)). There have been as
many determinations of these as there have been new data,
one of the earliest being (U�, V�,W�) = (9, 12, 7) km s−1

by Delhaye (1965). Very precise measurements of these have
been extracted from the Hipparcos proper motions and the
GCS survey. Dehnen & Binney (1998b) and Aumer & Binney
(2009), using Hipparcos proper motions, got (U�, V�,W�) =
(9.96 ± 0.33, 5.25 ± 0.54, 7.07 ± 0.37) km s−1. A revision of
V� was suggested by Binney (2010) and McMillan & Binney
(2010). Later Schönrich et al. (2010) explained why the previous
estimates, which used colors as a proxy for age, gave incorrect
results. Using a chemodynamical model calibrated on GCS data,
they found (U�, V�,W�) = (11.1±0.72, 12.24±0.47, 7.07±
0.36) km s−1. Schönrich (2012) described a model-independent
method and suggests that U� could be as high as 14 km s−1. As
further evidence of an unsettled situation, Bovy et al. (2012a)
find from a sample of 3500 APOGEE stars vc = 218 ± 6,
V� = 26 ± 3, and U� = 10.5 km s−1 and also suggest a
revision of the LSR reference frame.

In this paper we refine the kinematic parameters of the Milky
Way, using first a simple model based on Gaussian velocity
distributions and then a model based on the Shu distribution
function (DF). We explore the AVR, the radial gradient in
dispersions, the solar motion, and the circular speed. A full
exploration of this parameter space using Markov Chain Monte
Carlo (MCMC) techniques has not been done before, even for
a sample as small as the GCS.

The RAVE survey contains giants and dwarfs in roughly
equal proportions, and it is hard to determine distances to
giants. Moreover, many RAVE stars are sufficiently distant for
the errors in their available, ground-based proper motions to
give rise to errors in their tangential velocities that far exceed
the small (∼1 km s−1) errors in their line-of-sight velocities.
Hence, we choose not to use either distances or proper motions.
Instead, we marginalize over these variables in addition to
mass, age, and metallicity. When the velocity distribution is
Gaussian, the marginalization over tangential velocity can be
done analytically; in general, for other models, e.g., Shu DF
models, the marginalization has to be done numerically, and it
is computationally expensive.
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Table 1
Geometry of Stellar Components

Component Age τ IMF ξ (m|τ ) ∝ mα Density Law ρ(R, z)

Thin disk <0.15 Gyr α = 1.6 for m < 1 M� ∝ exp(−(a/hR+)2) − exp(−(a/hR−)2) hR+ = 5 kpc, hR− = 3 kpc

α = 3.6 for m > 1 M�
0.15–10 Gyr ∝ exp(−(0.52 + a2

h2
R+

)0.5) − exp(−(0.52 + a2

h2
R−

)0.5) hR+ = 2.53 kpc, hR− = 1.32 kpc

Thick disk 11 Gyr α = 0.5 ∝ exp (−R/hR)
(

1 − 1/hz

xl (2.+xl/hz) z
2
)

if |z| � xl hR+ = 2.5 kpc, hz = 0.8 kpc

∝ exp (−R/hR) exp(xl/hz)
1+xl/2hz

exp(− |z|
hz

) if |z| > xl xl = 0.4 kpc

Notes. The formulae used are from Robin et al. (2003). Note that (R, θ, z) are the coordinates in the galactocentric cylindrical coordinate system and
a2 = R2 + (z2/ε(τ )2) (for the thin disk).

Bovy et al. (2012a) recently used a similar procedure to fit
models to 3500 APOGEE stars, but they did not investigate the
AVR and considered only Gaussian models. In this paper we fit
a kinematic model to 280,000 RAVE stars taking full account of
RAVE’s photometric selection function. To handle the large data
size, we introduce two new MCMC model-fitting techniques.
Our aim is to encapsulate in simple analytical models the main
kinematic properties of the Milky Way disk. Our results should
be useful for making detailed comparison with simulations.

The paper is organized as follows. In Section 2 we introduce
the analytic framework employed for modeling. In Section 3
we describe the data that we use and its selection functions.
In Section 4 we describe MCMC model-fitting techniques
employed here. In Section 5 we present our results, and we
discuss their implications in Section 6. Finally, in Section 7 we
summarize our findings and look forward to the next stages of
the project.

2. ANALYTIC FRAMEWORK FOR
MODELING THE GALAXY

We first describe the analytic framework used to model the
Galaxy (Sharma et al. 2011). The stellar content of the Galaxy is
modeled as a set of distinct components: the thin disk, the thick
disk, the stellar halo, and the bulge. The DF, i.e., the number
density of stars as a function of position (r), velocity (v), age (τ ),
metallicity (Z), and mass (m) for each component, is assumed
to be specified a priori as a function

fj (r, v, τ, Z,m), (1)

where j (= 1, 2, 3, 4) runs over components. The form of fj
that correctly describes all the properties of the Galaxy and
is self-consistent is still an open question. However, over the
past few decades considerable progress has been made in iden-
tifying a working model dependent on a few simple assump-
tions (Robin & Creze 1986; Bienayme et al. 1987; Haywood
et al. 1997a, 1997b; Girardi et al. 2005; Robin et al. 2003).
Our analytical framework brings together these models as we
describe below.

For a given Galactic component, let the stars form at a
rate Ψ(τ ) with a mass distribution ξ (m|τ ) (IMF) that is a
parameterized function of age τ . Let the present-day spatial
distribution of stars p(r|τ ) be conditional on age only. Finally,
assuming the velocity distribution to be p(v|r, τ ) and the
metallicity distribution to be p(Z|τ ), we have

f (r, v, τ,m,Z) = Ψ(τ )

〈m〉 ξ (m|τ )p(r|τ )p(v|r, τ )p(Z|τ ). (2)

The functions conditional on age can take different forms for
different Galactic components. The IMF here is normalized such
that

∫ mmax

mmin
ξ (m|τ )dm = 1 and 〈m〉 = ∫ mmax

mmin
mξ (m|τ )dm is the

mean stellar mass. The metallicity distribution is modeled as a
lognormal distribution,

p(Z, |τ ) = 1

σlog Z(τ )
√

2π
exp

[
− (log Z − log Z̄(τ ))(

2σ 2
log Z(τ )

)
]

, (3)

the mean and dispersion of which are given by age-dependent
functions Z̄(τ ) and σlog Z(τ ). The Z̄(τ ) is widely referred to
as the AMR. Functional forms for each of the expressions in
Equation (2) are given in Sharma et al. (2011; see also Robin
et al. 2003). For convenience we reproduce in Table 1 a short
description of the thin- and thick-disk components. The axis
ratio ε of the thin disk is given by

ε(τ ) = Min

(
0.0791, 0.104

(
τ/Gyr + 0.1

10.1

)0.5
)

, (4)

and this represents the age–scale height relation.

2.1. Kinematic Modeling

Having described the general framework for analytical mod-
eling, we now discuss our strategy for the kinematic modeling
of the Milky Way. Simply put, we want to constrain the velocity
distribution p(v|r, τ ). In what follows, we assume that every-
thing except for p(v|r, τ ) on the right-hand side of Equation (2)
is known. In the next two subsections we discuss the functional
forms of the adopted p(v|r, τ ) and describe ways to parame-
terize them. Technical details related to fitting such a model to
observational data are discussed in Section 4.

Although we can supply any functional form for p(v|r, τ ) and
fit them to data, in reality there is much less freedom. The spatial
density distribution and the kinematics are linked to each other
via the potential. Hence, specifying p(v|r, τ ) independently
lacks self-consistency. In such a scenario, the accuracy of
a pure kinematic model depends on our ability to supply
functional forms of p(v|r, τ ) that are a good approximation to
the actual velocity distribution of the system. A proper way to
handle this problem would be to use dynamically self-consistent
models, but such models are still under development, and we
hope to explore them in future. In the meantime, we explore
kinematic models that provide a reasonable approximation
to the actual velocity distribution and hope to learn from
them.

4
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2.2. Gaussian Velocity Ellipsoid Model

In this model, the velocity distribution is assumed to be a
triaxial Gaussian,

p(v|r, τ ) = 1

σRσφσz(2π )3/2
exp

[
− v2

R

2σ 2
R

]
exp

[
− v2

z

2σ 2
z

]

× exp

[
− (vφ − vφ)2

2σ 2
φ

]
, (5)

where R, φ, z are cylindrical coordinates. The vφ is the asym-
metric drift and is given by

vφ
2(τ, R) = v2

c (R) + σ 2
R

×
(

d ln ρ

d ln R
+

d ln σ 2
R

d ln R
+ 1 − σ 2

φ

σ 2
R

+ 1 − σ 2
z

σ 2
R

)
. (6)

This follows from Equation (4.227) in Binney & Tremaine
(2008) assuming vR vz = (v2

R − v2
z )(z/R). This is valid for the

case where the principal axes of the velocity ellipsoid are aligned
with the (r, θ, φ) spherical coordinate system. If the velocity
ellipsoid is aligned with the cylindrical (R, φ, z) coordinate
system, then vR vz = 0. Recent results using the RAVE data
suggest that the velocity ellipsoid is aligned with the spherical
coordinates (Siebert et al. 2008; Binney et al. 2014). One can
parameterize our ignorance by writing the asymmetric drift as
follows:

vφ
2(τ, R) = v2

c (R) + σ 2
R

(
d ln ρ

d ln R
+

d ln σ 2
R

d ln R
+ 1 − k2

ad

)
. (7)

This is the form that is used by Bovy et al. (2012a).
The dispersions of the R, φ and z components of velocity

increase as a function of age owing to secular heating in the
disk, and there is a radial dependence such that the dispersion
increases toward the Galactic center. We model these effects
after Aumer & Binney (2009) and Binney (2010) using the
functional form

σ thin
R,φ,z(R, τ ) = σ thin

R,φ,z,� exp

[
−R − R0

Rthin
σ

]

×
(

τ + τmin

τmax + τmin

)βR,φ,z

(8)

σ thick
R,φ,z(R) = σ thick

R,φ,z,�exp

[
−R − R0

Rthick
σ

]
. (9)

The choice of the radial dependence is motivated by the desire to
produce disks in which the scale height is independent of radius.
For example, under the epicyclic approximation, if σz/σR is
assumed to be constant, then the scale height is independent of
radius for Rσ = 2Rd (van der Kruit & Searle 1982; van der Kruit
1988; van der Kruit & Freeman 2011). In reality there is also
a z dependence of velocity dispersions, which we have chosen
to ignore in our present analysis. This means that for a given
mono age population the asymmetric drift is independent of z.
However, the velocity dispersion and asymmetric drift of the
combined population of stars are functions of z. This is because
the scale height of stars for a given isothermal population is an
increasing function of its vertical velocity dispersion.

For our kinematic analysis we assume d ln ρ/dR = −1/Rd

with Rd = 2.5 kpc. While this is true for the thick disk adopted
by us, for the thin disk this is only approximately true (see
Table 1). The thin disk with age between 0.15 and 10 Gyr is
exponential at large R with a scale length of 2.53 kpc.

2.3. Shu Distribution Function Model

The Gaussian velocity ellipsoid model has its limitations. In
particular, the distribution of vφ is strongly non-Gaussian, being
highly skewed to low vφ .

For a two-dimensional disk, a much better approximation
to the velocity distribution is provided by the Shu (1969) DF.
Moreover, the Shu DF, being dynamical in nature, connects the
radial and azimuthal components of velocity dispersion to each
other and to the mean-streaming velocity, thus lowering the
number of free parameters in the model.

Assuming that the potential is separable as Φ(R, z) =
ΦR(R) + Φz(z), we can write the DF as

f (ER,Lz,Ez) = F (L)

σ 2
R(Lz)

exp

[
− ER

σ 2
R(Lz)

]

× exp[−(Ez)/(σ 2
z (Lz))]

σz(Lz)
√

2π
, (10)

where L = Rvφ is the angular momentum,

Ez = v2
z

2
+ Φz(z) (11)

ER = 1

2
v2

R + Φeff(R,Lz) − Φeff(Rg,Lz)

= 1

2
v2

R + ΔΦeff(R,Lz), (12)

with

Φeff(R,Lz) = L2
z

2R2
+ Φ(R) 	 L2

z

2R2
+ v2

c ln R (13)

being the effective potential. Let Rg(Lz) = Lz/vc be the radius
of a circular orbit with specific angular momentum Lz. In
Schönrich & Binney (2012; see also Sharma & Bland-Hawthorn
2013) it was shown that the joint distribution of R and Rg can
be written as

P (R,Rg) = (2π )2Σ(Rg)

g
(

1
2a2

)
× exp

[
2 ln(Rg/R) + 1 − R2

g/R
2

2a2

]
, (14)

where Σ(R) is a function that controls the disk’s surface density
and

a = σR(Rg)/vc (15)

g(c) = ecΓ(c − 1/2)

2cc−1/2
. (16)

We assume a to be specified as

a = a0(τ )exp

[
−Rg

Rσ

]

= σR,�
vc

(
τ + τmin

τmax + τmin

)βR

exp

[
−Rg − R0

Rσ

]
(17)
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and σz to be specified as

σz0(Rg, τ ) = σz,�

(
τ + τmin

τmax + τmin

)βz

exp

[
−Rg − R0

Rσ

]
. (18)

Now this leaves us to choose Σ(Rg). This should be done so as
to produce disks that satisfy the observational constraint given
by Σ(R), i.e., an exponential disk (or disks) with scale length
Rd. A simple way to do this is to let

Σ(Rg) = e−Rg/Rd

2πR2
d

. (19)

However, this matches the target surface density only approxi-
mately. A better way to do this is to use the empirical formula
proposed in Sharma & Bland-Hawthorn (2013) such that

Σ(Rg) = e−Rg/Rd

2πR2
d

− 0.00976a2.29
0

R2
d

s

×
[

Rg

(3.74Rd (1 + q/0.523)

]
, (20)

where q = Rd/Rσ and s is a function of the following form:

s(x) = ke−x/b((x/a)2 − 1), (21)

with (k, a, b) = (31.53, 0.6719, 0.2743). This is the scheme
that we employ in this paper.

As in the previous section, we adopt Rd = 2.5 kpc.

2.4. Model for the Potential

So far we have described kinematic models in which the
potential is separable in R and z. In such cases, the energy
associated with the vertical motion Ez can be assumed to be the
third integral of motion. In reality, the potential generated by a
double-exponential disk is not separable in R and z. For example,
the hypothetical circular speed defined as

√
R∂Φ(R, z)/∂R can

have both a radial and a vertical dependence. We model it as

vc(R, z) =
√

R
∂Φ
∂R

= (Θ0 + αRR)
1

1 + αz|z/ kpc|1.34
. (22)

The parameters αR and αz control the radial and vertical
dependencies, respectively. The motivation for the vertical term
comes from the fact that the above formula with αz = 0.0374
provides a good fit to the vc(R0, z) profile of the Milky Way
potential by Dehnen & Binney (1998a), as well as that of Law &
Majewski (2010) (see Figure 1). Both of them have bulge, halo,
and disk components. The former has two double-exponential
disks, while the latter has a Miyamoto–Nagai disk.

To accurately model a system, in which the potential is
not separable in R and z, requires a DF that incorporates the
third integral of motion in addition to energy E and angular
momentum Lz, e.g., DFs based on action integrals Jr, Jz, and
Lz (Binney 2012b, 2010). Converting phase-space coordinates
(x, v) to action integrals is not easy, and techniques to make this
possible are under development. One way to compute the actions
is by using the adiabatic approximation, i.e., conservation
of vertical action (Binney & McMillan 2011; Schönrich &
Binney 2012). Using an adiabatic approximation, Schönrich
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Figure 1. Circular speed as a function of height z above the midplane for models
of the Milky Way consisting of bulge, halo, and disk. The dashed red lines are
for the fitting formula with different values of αz. The larger the αz, the steeper
is the fall of circular speed.

(A color version of this figure is available in the online journal.)

& Binney (2012) extend the Shu DF to three dimensions and
model the kinematics as a function of distance from the plane.
Recently, it has been shown by Binney (2012a) that the adiabatic
approximation is accurate only close to the midplane and that
much better results are obtained by assuming the potential to be
similar to a Stackel potential.

In this paper, to model systems where the potential is not
separable in R and z, we follow a much simpler approach. The
approach is motivated by the fact that, for realistic galactic
potentials, we expect the vφ of a single age population to fall
with z. It has been shown by both Binney & McMillan (2011)
and Schönrich & Binney (2012) that when vertical motion is
present, in a Milky-Way-type potential, the effective potential
for radial motion (see Equation (13)) needs to be modified as
the vertical motion also contributes to the centrifugal potential.
Neglecting this effect leads to an overestimation of vφ . As one
moves away from the plane this effect is expected to become
more and more important. Second, as shown by Schönrich &
Binney (2012), in a given solar annulus, stars with smaller Rg
will have larger vertical energy and hence larger scale height.
This implies that stars with smaller Rg are more likely to be
found at higher z; consequently, the vφ should also decrease
with height.

The fall of vφ with height is also predicted by the Jeans
equation for an axisymmetric system

vφ
2(R, z) =

[
R

∂Φ
∂R

]
+ σ 2

R

[
1 − σ 2

φ

σ 2
R

+
∂ln

(
ρσ 2

R

)
∂ln R

]

+ R

[
∂vRvz

∂z
+ vRvz

∂ ln ρ

∂z

]
. (23)

The vφ at high z will be lower both because R∂Φ/∂R is lower
and because the term in the third square bracket decreases with
z, e.g., assuming vRvz = (σ 2

R − σ 2
z )z/R.

For the Gaussian model we simulate the overall reduction of
vφ with z by introducing a parameterized form for vc(R, z) as
given by Equation (22) in Equation (6). Given this prescription,
we expect αz > 0.03744, so as to account for effects other
than that involving the first term in Equation (23). In reality, the
velocity dispersion tensor σ 2 will have a much more complicated
dependence on R and z than what we have assumed, e.g., we
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Table 2
Description of Model Parameters

Model Parameter Description

U� Solar motion with respect to LSR

V� Solar motion with respect to LSR

W� Solar motion with respect to LSR

σ thin
R The velocity dispersion at 10 Gyr

Normalization of thin disk AVR (Equation (8))

σ thin
φ The velocity dispersion at 10 Gyr

Normalization of thin disk AVR (Equation (8))

σ thin
z The velocity dispersion at 10 Gyr

Normalization of thin disk AVR (Equation (8))

σ thick
R The velocity dispersion of thick disk (Equation (9))

σ thick
φ The velocity dispersion of thick disk (Equation (9))

σ thick
z The velocity dispersion of thick disk (Equation (9))

βR The exponent of thin disk AVR (Equation (8))

βφ The exponent of thin disk AVR (Equation (8))

βz The exponent of thin disk AVR (Equation (8))

Rthin
σ The scale length of the

velocity dispersion profile for thin disk (Equation (8))

Rthick
σ The scale length of the

velocity dispersion profile for thick disk (Equation (9))

R0 Distance of Sun from the Galactic center

Θ0 The circular speed at Sun

αz Vertical fall of circular velocity (Equation (22))

αR Radial gradient of circular speed (Equation (22))

assume that σR,φ,z only has an R dependence that is given by an
exponential form.

For the Shu model we replace vc in Equation (15) by the
form in Equation (22). The idea again is to model the fall of
vφ with z. However, the prescription breaks the dynamical self-
consistency of the model and turns it into a fitting formula. In
reality, the vφ may not exactly follow the functional form for
the vertical dependence predicted by our model, but it is better
than completely neglecting it.

2.5. Models and Parameters Explored

We now give a description of the parameters and models that
we explore. We investigate up to 18 parameters (see Table 2
for a summary). These are the solar motion (U�, V�,W�), the
logarithmic slopes of AVRs (βR, βφ, βz), the scale lengths of
radial dependence of velocity dispersions (Rthin

σ , Rthick
σ ), and the

velocity dispersions at R = R0 of the thin disk (σ thin
φ , σ thin

z , σ thin
R )

and of the thick disk (σ thick
φ , σ thick

z , σ thick
R ); for simplicity the

subscript � is dropped here. The Gaussian models are denoted
by GAU, whereas models based on the Shu DF are denoted by
SHU. For models based on the Shu DF, the azimuthal motion
is coupled to the radial motion; hence, βφ , σ thin

φ , and σ thick
φ

are not required. When Θ0 is fixed, we assume its value to be
226.84 km s−1. In some cases, we also keep the parameters βz

and Rthin
σ fixed. While reporting the results we highlight the fixed

parameters using the magenta color.
In our analysis the distance of the Sun from the Galactic

center, R0, is assumed to be 8.0 kpc. To gauge the sensitivity of
our results to R0, we also provide results for cases with R0 = 7.5

and 8.5 kpc. The true value of R0 is still debatable, ranging from
6.5 to 9 kpc. Recent results from studies of orbits of stars near the
Galactic center give R0 = 8.33 ± 0.35 (Gillessen et al. 2009).
The classically accepted value of 8 ± 0.5 kpc is a weighted
average given in a review by Reid (1993). The main reason we
keep R0 fixed is as follows. Given that we do not make use of
explicit distances, proper motions, or external constraints like
the proper motion of Sgr A*, it is clear that we will not be
able to constrain R0 well, especially if Θ0 is free. For example
McMillan & Binney (2010), using parallax, proper motion, and
line-of-sight velocity of masers in high star-forming regions,
show that constraining both Θ0 and R0 independently is difficult.

3. OBSERVATIONAL DATA AND
SELECTION FUNCTIONS

In this paper we analyze data from two surveys, RAVE
(Steinmetz et al. 2006; Zwitter et al. 2008; Siebert et al. 2011;
Kordopatis et al. 2013) and GCS (Nordström et al. 2004;
Holmberg et al. 2009). For fitting theoretical models to data from
stellar surveys, it is important to take into account the selection
biases that were introduced when observing the stars. This is
especially important for spectroscopic surveys that observe only
a subset of all possible stars defined within a color–magnitude
range. So we also analyze the selection function for the RAVE
and GCS surveys.

3.1. RAVE Survey

The RAVE survey collected spectra of 482,430 stars between
2004 April and 2012 December, and stellar parameters, radial
velocity, abundance, and distances have been determined for
425,561 stars. In this paper we used the internal release of RAVE
from 2012 May, which consisted of 458,412 observations. The
final explored sample after applying various selection criteria
consists of 280,128 unique stars. These data are available in the
DR4 public release (Kordopatis et al. 2013), where an extended
discussion of the sample is also presented.

For RAVE we only make use of the �, b, and vlos of stars. The
IDENIS and 2MASS J − Ks colors are used for marginalization
over age, metallicity, and mass of stars taking into account
the photometric selection function of RAVE. We do not use
proper motions, or stellar parameters that could in principle
provide tighter constraints, but then one has to worry about the
systematics introduced by their use. For example, in a recent
kinematic analysis of RAVE stars, Williams et al. (2013) found
systematic differences between different proper-motion catalogs
like PPMXL (Röser et al. 2008), SPM4 (Girard et al. 2011),
and UCAC3 (Zacharias et al. 2010). As for stellar parameters,
although they are reliable, no pipeline can claim to be free of
unknown systematics, especially when working with low signal-
to-noise ratio data. Hence, as a first step it is instructive to work
with data that are least ambiguous, and then in the next step
to check the results by adding more information. As we will
show later, for the types of model that we consider, even using
only �, b and vlos can provide good constraints on the model
parameters.

We now discuss the selection function of RAVE. The RAVE
survey was designed to be a magnitude-limited survey in
the I band. This means that theoretically it has one of the
simplest selection functions, but, in practice, for a multitude
of reasons, some biases were introduced. First, the DENIS
and 2MASS surveys were not fully available when the survey
started. Hence, the first input catalog (IC1) had stars from
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Tycho and SuperCOSMOS. For Tycho stars, I magnitudes were
estimated from VT and BT magnitudes. On the other hand,
the SuperCOSMOS stars had I magnitudes, but an offset was
later detected with respect to IDENIS. Later, as DENIS and
2MASS became available, the second input catalog IC2 was
created. With the availability of DENIS, it became possible
to have a direct I magnitude measurement that was free from
offsets like those observed in SuperCOSMOS. However, DENIS
had its own problems—saturation at the bright end, duplicate
entries, missing stripes in the sky, inter alia. To solve the
problem of duplicate entries, the DENIS catalog was cross-
matched with 2MASS to within a tolerance of 1′′. This helped
clean up the color–color diagram of (IDENIS − K2MASS) versus
(J2MASS − K2MASS) in particular (Seabroke 2008).

Given this history, the question arises, how can we compute
the selection function? Since accurate I magnitude photometry
is not available for stars that are only in IC1, the first cut
we make is to select stars from IC2 only. Then we removed
the duplicates—among multiple observations one of them was
selected randomly. To weed out stars with large errors in radial
velocity, we made some additional cuts:

Signal to Noise STN > 20

Tonry − Davis Correlation Coefficient > 5.

For brighter magnitudes, IDENIS < 10, IDENIS suffers from
saturation. One could either get rid of these stars, to be more
accurate, or ignore the saturation. In the present analysis we
ignore the saturation. Note that the observed stars in the input
catalog are not necessarily randomly sampled from the IC2.
Stars were divided into four bins in Imag, and stars in each bin
were randomly selected to observe at a given time. However,
it seems that later on this division was not strictly maintained
(probably owing to the observation of calibration stars and some
extra stars going to brighter magnitudes). This means that the
selection function has to be computed as a function of IDENIS
in much finer bins. Assuming that the DENIS I magnitudes
are correct and the cross-matching is correct, the only thing
that needs to be taken into account is the angular completeness
of the DENIS survey (missing stripes). To this end, we grid
the observed and IC2 stars in (�, b, IDENIS) space and compute
a probability map. To grid the angular coordinates, we use
the HEALPIX pixelization scheme (Górski et al. 2005). The
resolution of HEALPIX is specified by the number nside, and
the total number of pixels is given by 12n2

side. For our purpose,
we use nside = 16, which gives a pixel size of 13.42 deg2,
which is smaller than the RAVE field of view of 28.3 deg2. For
magnitudes, we use a bin size of 0.1 mag, which again is much
smaller than the magnitude range included in each observation.
Given the fine resolution of the probability map, the angular and
magnitude-dependent selection biases are adequately handled.
Note that in the range (225◦ < � < 315◦) and (5◦ < |b| < 25◦),
a color selection of (J −Ks) > 0.5 was used to selectively target
giants, and we take this into account in our analysis.

Arce & Goodman (1999) suggest that the Schlegel et al.
(1998) maps overestimate reddening by a factor of 1.3–1.5 in
regions with smooth extinction AV > 0.5, i.e., EB−V > 0.15
(see also Cambrésy et al. 2005). In Figure 2 the color and
temperature distributions of our RAVE stars (black lines) are
compared with predictions from Galaxia given the selection
above (see Figure 3 for the distribution of stars in the l, b plane).
At high latitudes (second and fourth panels) the red model curves
agree reasonably well with the black data curves, but in the top

panel (5◦ < |b| < 25◦) the red model distribution of J−K colors
is clearly displaced to red colors relative to the data. The low-
latitude temperature distributions shown in the third panel show
no analogous shift of the model curve to lower temperatures,
so we have a clear indication that the model colors have been
made too red by excessive extinction. To correct this problem,
we modify the Schlegel EB−V as follows:

fcorr = 0.6 + 0.2

(
1 − tanh

[
EB−V − 0.15

0.1

])
. (24)

The formula above reduces extinction by 40% for high-
extinction regions; the transition occurs around EB−V ∼ 0.15
and is smoothly controlled by the tanh function. The green
curves in the top two panels show the proposed correction to
Schlegel maps. Although not perfect, the correction reduces the
discrepancy between the model and data for low-latitude stars
(top panel) while having negligible impact on high-latitude stars.

The fact that the temperature and color distributions in
Figure 2 match up so well is encouraging, given that we
selected on IDENIS magnitude alone. This implies that the spatial
distribution of stars specified by Galaxia satisfies one of the
necessary observational constraints.

3.2. GCS Survey

We fit the models to all six phase-space coordinates of a
subset of the 16,682 F- and G-type main-sequence stars in the
GCS (Nordström et al. 2004; Holmberg et al. 2009). A mock
GCS sample was extracted from the model as in Sharma et al.
(2011). Velocities and temperatures are available for 13,382
GCS stars. We found that while Galaxia predicts less than one
halo star in the GCS sample for a distance less than 120 pc, when
plotted in the ([Fe/H], vφ) plane, the GCS has 29 stars with
[Fe/H] < −1.2 and highly negative values of vφ (as expected
for halo stars). Following Schönrich et al. (2010), we identify
these as halo stars and exclude them from our analysis.

The GCS catalog is complete for F- and G-type stars within
a volume given by r < 40 pc and V ∼ 8 in magnitude;
within these limits there are only 1342 stars. Since GCS is
a color–magnitude-limited survey, there is no need to restrict
the analysis to a volume-complete sample. In Nordström et al.
(2004) magnitude completeness as a function of color is pro-
vided, and we use this (their Section 2.2). There is some ambi-
guity about the coolest dwarfs that were added for declination
δ < −26◦; from information gleaned from Nordström et al.
(2004), we could not find a suitable way to take this into ac-
count.

We also applied some additional restrictions on the sample.
For example, we restrict our analysis to stars with distance less
than 120 pc, so as to avoid stars with large distance errors. The
GCS survey selectively avoids giants. To mimic this, we use
the selection function MV < 10(b − y) − 3. The predicted
temperature distributions show a mismatch with models, in
particular, there are too many hot stars. Using Casagrande et al.
(2011) temperatures, which are more accurate, we found an
upper limit on Teff of 7244 K, which was applied to the models.

After the above-mentioned cuts, the final sample consisted
of 5201 stars. Note that we do not remove possible binary
stars as this will further reduce the number of stars. In the
future, we think it will be instructive to check whether there
is any systematic associated with the inclusion or exclusion of
binaries. The black histograms in Figure 4 show the distribution
of these stars, while the red histograms show the predictions of
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Figure 2. Color and temperature distribution (from DR3 pipeline) of RAVE stars compared with Galaxia simulations with properly matched selection and statistical
sampling. The effect of our new correction formula for the Schlegel extinction map is also shown. The results for |b| < 25◦ and |b| > 25◦ are shown separately. Note
that Galaxia makes use of Padova isochrones.

(A color version of this figure is available in the online journal.)

the model. At the hot end, the temperature distributions of model
and data are still discrepant, but the distance distributions agree
nicely. The model’s age distribution is qualitatively correct,
but differences can also be seen. The plotted GCS ages are
maximum likelihood Padova ages, and there can be systematics
associated with this. A more quantitative comparison would
require estimating the ages of model stars in the same way
as done by GCS and taking into account uncertainties and
systematics, which we do not do here. The peak in the model at
11 Gyr is due to the thick disk having a fixed age. The peaks in
the data at 0 and 14 Gyr are most likely due to caps employed
while estimating ages. The color distribution in GCS shows a
peak at around b − y = 0.3, which could be due to an unknown
selection effect. The bump at b − y ∼ 0.43, which is also seen
in models, is due to turnoff stars. Overall, we think that our
modeling reproduces to a good degree the selection function of
the GCS stars.

4. MODEL FITTING TECHNIQUES

If yi are the observed properties of a star, we can describe the
observed data by y = {yi ∈ R

d , 0 < i < N}. Also, let θ be the
set of parameters that define the model. Our job is to compute

p(θ |y) ∝ p(y|θ )p(θ ), (25)

where p(y|θ ) = ∏
i p(yi |θ ). We employ an MCMC scheme

to estimate p(θ |y) and assume a uniform prior on θ . We now
discuss how to compute p(yi |θ ).

Generally, a model of a galaxy gives the probability density
p(r, v, τ, Z,m|θ ). For RAVE, the observed quantities are vlos,

�, and b, while for GCS they are �, b, r, vl, vb and vlos. Since
quantities like τ, Z and m are unknown, one has to compute
the marginal probability density by integration. For RAVE, the
required marginal density is

p(�, b, vlos|θ ) =
∫

p(�, b, r, τ, Z,m, vl, vb, vlos|θ )

× S(�, b, τ, Z,m) dr dτ dZ dm dvl dvb,

(26)

and for GCS it is

p(�, b, r, vl, vb, vlos|θ ) =
∫

p(�, b, r, τ, Z,m, vl, vb, vlos|θ )

× S(�, b, τ, Z,m) dτ dZ dm. (27)

Here S(�, b, τ, Z,m) is the selection function specifying how
the stars were preselected in the data. The actual selection is
on photometric magnitude, which in turn is a function of τ, Z
and m.

For the kinds of models explored here, the computations are
considerably simplified owing to the fact that

p(�, b, r, τ, Z,m, vl, vb, vlos|θ ) = p(vl, vb, vlos|�, b, r, τ, θ )

× p(�, b, r, τ, Z,m|θS),

(28)

for which θS is the set of model parameters that govern
the spatial distribution of stars and θ is the set of model
parameters that govern the kinematic distribution of stars. The
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term p(�, b, r, τ, Z,m|θS) is invariant in our analysis, and this is
the main assumption that we make. In other words, we assume
SFR, IMF, scale length of disk, age–scale height relation,
AMR, and radial metallicity gradient for the disk. All these
distributions can be constrained by the stellar photometry. The
distribution p(vl, vb, vlos|�, b, r, τ, θ ) represents the kinematics,
which is what we explore. It should be noted that the model
p(�, b, r, τ, Z,m|θS) that we use has been shown to satisfy
the number count of stars (Robin et al. 2003; Sharma et al.
2011). Ideally, in a fully self-consistent model, the scale height,
the vertical stellar velocity dispersion, and the potential are all
related to each other, and this is something we would like to
address in the future.

We can now integrate the last term in Equation (28) over m
and Z such that

p(�, b, r, vl, vb, vlos, τ |θ ) = p(vl, vb, vlos|�, b, r, τ, θ )

× p(�, b, r, τ |θS, S), (29)

where

p(�, b, r, τ |θS, S) =
∫ ∫

p(�, b, r, τ, Z,m|θS)

× S(�, b, τ, Z,m) dZ dm. (30)

The term p(�, b, r, τ |θS, S) is computed numerically using the
code Galaxia (Sharma et al. 2011). Galaxia uses isochrones
from the Padova database to compute photometric magni-
tudes for the model stars (Marigo et al. 2008; Bertelli et al.
1994). We first generate a fiducial set of stars satisfying the
color–magnitude range of the survey. Then we apply the selec-
tion function and reject stars that do not satisfy the constraints
of the survey. The accepted stars are then binned in (�, b, r, τ )
space. Since the GCS is local to the Sun, we use the approxi-
mation p(�, b, r, τ |θS, S) ∝ p(τ |θS, S). The probability distri-
bution in (�, b, r, τ ) space for RAVE is shown in Figure 3.

For RAVE, we have to integrate over four variables
(r, τ, vl, vb), but for GCS we integrate over only τ . The four-
dimensional marginalization for RAVE poses a serious compu-
tational challenge for data as large as the RAVE survey. For
Gaussian DFs, the integral over vl and vb can be performed ana-
lytically to give an analytic expression for p(vlos|�, b, r, τ, Z, θ ),
but in general it cannot be done analytically. Hence, we try two
new methods. The first method is fast but has inflated uncer-
tainties. The second method is slower to converge but gives
correct estimates of uncertainties. Given these strengths and
limitations, we use a combined strategy that makes best use of
both the methods.

We use the first sampling and projection method to get an
initial estimate of θ and also its covariance matrix. These
are then used in the second data augmentation method. The
initial estimate reduces the burn-intime, while the covariance
matrix eliminates the need to tune the widths of the proposal
distributions. In general, we use an adaptive MCMC scheme,
which avoids manual tuning of the widths of the proposal
distributions (Andrieu & Thoms 2008). At regular intervals,
we compute the covariance matrix and scale it so as to achieve
the desired acceptance ratio for the given number of parameters
Gelman et al. (1996). We now discuss the two methods in more
detail.

4.1. MCMC Using Sampling and Projection

Instead of doing the computationally intensive marginaliza-
tion, at each step of the Markov chain of model parameters, we
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Figure 3. Probability distribution of RAVE stars analyzed in this paper in (�, b)
space (top) and (age, distance) space (bottom). The age–distance distributions
are predictions from the Galaxia model for stars satisfying the RAVE selection
criteria.

(A color version of this figure is available in the online journal.)

generate a sample of stars by Monte Carlo sampling the current
model subject to the selection function. Binning these stars in
(�, b, vlos) space then gives an estimate of p(�, b, vlos|θ ). Note
that, given the stochastic nature of our estimate of p(�, b, vlos|θ ),
the standard Metropolis–Hastings algorithm had to be altered to
avoid the simulation from getting stuck at a stochastic maximum
of the likelihood.

4.2. MCMC Using Data Augmentation

Instead of marginalizing, one can treat the nuisance parame-
ters as unknown parameters and estimate them alongside other
parameters. This constitutes what is known as a sampling-
based approach for computing the marginal densities. The ba-
sic form of this scheme was introduced by Tanner & Wong
(1987) and later extended by Gelfand & Smith (1990). Let
x = {xi ∈ R

d , 0 < i < N} be an extra set of variables that
are needed by the model to compute the probability density.
Then we can write

p(θ, x|y) ∝ p(x, y|θ )p(θ ), (31)

where p(x, y|θ ) = ∏
i p(xi, yi |θ ) and p(xi, yi |θ ) is a function

that is known and relatively easy to compute. For example, for
the RAVE data yi = {li , bi, vi,los} and x = {ri, τi, vl,i , vb,i}.
Because of the unusually large number of parameters, it is
difficult to get satisfactory acceptance rates with the standard
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Figure 4. Distribution of GCS stars as a function of color, temperature, distance, and age. Shown alongside are results of a mock sample created using Galaxia but
without observational uncertainties. The top panel shows the distribution in the (b − y, MV ) plane; the colors span the range 0.205 < (b − y) < 0.5. The magnitude
limits are a function of color and are taken from Nordström et al. (2004). The line represents the equation MV = 10(b − y) − 3 and is used to mimic the selective
avoidance of giants in GCS. A selection of d < 0.12 kpc and Teff > 7244 K is also applied. The temperature and ages (maximum likelihood Padova) are from
Casagrande et al. (2011).

(A color version of this figure is available in the online journal.)

Metropolis–Hastings scheme without making the widths of
the proposal distributions extremely small. Thus, the chains
would take an unusually long time to mix. To solve this,
one uses the Metropolis scheme with Gibbs sampling (MWG;
Tierney 1994). The MWG scheme is also useful for solving
hierarchical Bayesian models, and its application for three-
dimensional extinction mapping is discussed in Sale (2012).
In our case, the Gibbs step consists of first sampling x from the
conditional density p(x|y, θ ) and then θ from the conditional
density p(θ |y, x). The sampling in each Gibbs step is done using
the Metropolis–Hastings algorithm.

4.3. Goodness of Fit

To assess the ability of a model to fit the data, we compute
an approximate reduced χ2 value. To accomplish this, first we
bin the data in the observational space. For RAVE, we bin the
data in (�, b, vlos) space with bins of size 859 deg2 and 5 km s−1.
Angular binning was done using the HEALPIX scheme. For
GCS, we bin the U, V, and W components of velocity separately
with bins of size 5 km s−1. Next, an N-body realization of a
given model was created satisfying the same constraints as the
data. The reduced χ2 between the data and the model was then
computed as

χ2
red =

〈∑
i

(ni − mi/fsample)2

ni + mi/f
2
sample

〉
for ni > 0. (32)

Here ni is the number of data points in a bin, mi is the number
of model points in the same bin, and fsample = ∑

i mi/
∑

i ni

is the sampling fraction. Choosing fsample to be very high,
one can increase the precision of the estimate, but then it
increases the computational cost. For RAVE fsample was 1,
while for GCS it was 10. To decrease the stochasticity in the
estimate, we computed the mean over 30 random estimates
〈χ2

red〉 = ∑30
k=1 χ2

red,k/30.
The reduced χ2 as computed above has its limitations. First,

it is not an accurate estimator of the goodness of fit. Second, the
χ2 value is sensitive to the choice of bin size and fsample. Hence,
it is not advisable to estimate statistical significance using our
reduced χ2. However, the reduced χ2 should be good enough
to qualitatively compare the goodness of fit of two models.

4.4. Tests Using Synthetic Data

We now describe tests in which mock data are sampled from
the DF and then fitted using the MCMC machinery. These
tests serve two main purposes. First, they determine if our
MCMC scheme works correctly. Second, they tell us which
parameters can be recovered and with what accuracy. We study
two classes of models based on (1) the Gaussian DF and (2)
the Shu DF. Additionally, we study two types of mock data,
one corresponding to the RAVE survey and the other to the
GCS survey. For GCS we also study models where Θ0 is fixed.
Altogether this leads to six different types of tests.

The results of these tests are summarized in Tables 3 and 4.
The difference of a parameter p from input values divided
by uncertainty σp measures the confidence of recovering the
parameter. To aid the comparison, we color the values if they
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Table 3
Tests on Mock Data: Constraints on Model Parameters with

Gaussian Distribution Function

Model GCS GAU GCS GAU RAVE GAU Input

U� 11.12+0.43
−0.41 11.17+0.39

−0.39 11.22+0.15
−0.16 11.1

V� 5.8+1.8
−1.9 8.6+1.3

−1.3 8.16+0.29
−0.24 7.5

W� 7.14+0.19
−0.19 7.35+0.19

−0.18 7.377+0.092
−0.087 7.25

σ thin
R 38.5+1.7

−1.6 42.7+1.6
−1.6 40.45+0.56

−0.84 40

σ thin
φ 28.8+1.1

−1 28.4+1.1
−1.1 27.7+0.42

−0.5 28.3

σ thin
z 25.03+0.86

−0.84 25.89+0.87
−0.86 25.09+0.6

−0.72 25

σ thick
R 63.3+3.8

−3.8 55.3+4.2
−4 60.62+0.55

−0.68 60

σ thick
φ 47.8+3.1

−2.9 43.7+3.2
−3.1 42.02+0.45

−0.4 42.4

σ thick
z 34.1+2.3

−2.1 32.8+2.3
−2.3 35.19+0.58

−0.52 35

βR 0.183+0.025
−0.025 0.249+0.021

−0.023 0.2079+0.0094
−0.015 0.2

βφ 0.216+0.023
−0.022 0.197+0.022

−0.023 0.177+0.013
−0.016 0.2

βz 0.38+0.022
−0.022 0.401+0.02

−0.022 0.368+0.025
−0.03 0.37

1/Rthin
σ 0.145+0.067

−0.064 0.055+0.077
−0.061 0.072+0.005

−0.0058 0.072

1/Rthick
σ 0.107+0.04

−0.034 0.133+0.065
−0.074 0.1341+0.0029

−0.0029 0.132

Θ0 233 265+63
−60 236+1.7

−1.4 233

R0 8 8 8 8

αz 0.047 0.047 0.0432+0.0015
−0.0019 0.047

αR 0 0 0 0

χ2
red 1.09 1.00 0.935

Notes. The model runs are named as follows: survey name as RAVE or GCS,
type of model as GAU for Gaussian and SHU for Shu. Parameters that do not
have error bars were fixed. Velocities are in km s−1 and distances in kpc.

Table 4
Tests on Mock Data: Constraints on Model Parameters with

Shu Distribution Function

Model GCS SHU GCS SHU RAVE SHU Input

U� 11.28+0.42
−0.41 11.16+0.42

−0.41 11.27+0.12
−0.14 11.1

V� 7.14+0.34
−0.36 7.35+0.79

−0.67 7.94+0.17
−0.15 7.5

W� 6.95+0.19
−0.2 6.99+0.2

−0.2 7.26+0.079
−0.088 7.25

σ thin
R 41+1.1

−1.1 40.7+1.1
−1.2 41.19+0.47

−0.6 40

σ thin
z 25.18+0.84

−0.84 24.9+0.95
−0.92 24.62+0.81

−0.65 25

σ thick
R 45.2+3.6

−3.5 44.3+3.9
−4 46.1+0.61

−0.58 45

σ thick
z 36.8+2.6

−2.4 32.3+2.4
−2.5 34.3+0.52

−0.51 35

βR 0.203+0.016
−0.016 0.201+0.017

−0.017 0.211+0.01
−0.013 0.2

βz 0.379+0.021
−0.021 0.371+0.023

−0.024 0.331+0.036
−0.025 0.37

1/Rthin
σ 0.0696+0.0071

−0.0075 0.074+0.015
−0.011 0.0682+0.0027

−0.0026 0.072

1/Rthick
σ 0.133+0.016

−0.016 0.131+0.018
−0.017 0.1307+0.0025

−0.0027 0.132

Θ0 233 224+33
−20 235.1+1.3

−1.3 233

R0 8 8 8 8

αz 0.047 0.047 0.0427+0.0019
−0.0018 0.047

αR 0 0 0 0

χ2
red 0.960 0.996 0.928

differ significantly from the input values: |δp|/σp < 2 (black),
2 < |δp|/σp < 3 (blue). It can be seen that all parameters are
recovered within the 3σ range as given by the error bars. Ideally,
to check the systematics, the fitting should be repeated multiple

Table 5
Fiducial Model Parameters: Velocities are in km s−1 and Distances in kpc

Model Galaxia Equivalent Besançon

U� 11.1 10.3

V� 12.24 6.3

W� 7.25 5.9

σ thin
R 50 50

σ thin
φ 32.3 32.3

σ thin
z 21 21

σ thick
R 67 67

σ thick
φ 51 51

σ thick
z 42 42

βR 0.33 0.33

βφ 0.33 0.33

βz 0.33 0.33

τsat 6.5 Gyr 6.5 Gyr

1/Rthin
σ 0.133 0.096 (0.114)

1/Rthick
σ 0.133 0.176 (0.2)

R0 8.0 8.5 (8.0)

Θ0 226.84 220.0

Rd 2.5 2.5

times and the mean values should be compared with input values.
However, the MCMC simulations being computationally very
expensive, we report results with only one independent data
sample for each of the test cases.

It can be seen that GCS-type data cannot properly constrain
Θ0. This is because the GCS sample is very local to the Sun.
Keeping Θ0 free also has the undesirable effect of increasing
the uncertainty of Rthin

σ and Rthick
σ . For Gaussian models, it is

easy to see from Equation (6) that the effect of changing Θ0
can be compensated by a change in Rthin

σ and Rthick
σ . Given

these limitations, when analyzing GCS we keep Θ0 fixed to
226.87 km s−1, a value that was used by Sharma et al. (2011) in
the Galaxia code.

The solar motion is constrained well by both surveys, but
better by RAVE. RAVE is also clearly better in constraining
thick-disk parameters than GCS, mainly because the GCS has
very few thick-disk stars (Galaxia estimates it to be 6% of the
overall GCS sample). Across all parameters, for Shu models βz

is the only parameter that is constrained better by GCS than by
RAVE. This is because RAVE only has radial velocities. This
means that only those stars that lie toward the pole can carry
meaningful information about the vertical motion, and such stars
constitute a much smaller subset of the whole RAVE sample.
This suggests that one can use the βz value from GCS when
fitting the RAVE data, as we show below.

5. CONSTRAINTS ON KINEMATIC PARAMETERS

First, we discuss the fiducial parametric model for the Galaxy
developed a decade ago by Robin et al. (2003). The so-
called Besançcon model is based on Gaussian velocity ellipsoid
functions. In the Galaxia code, the tabulated functions of
Robin et al. (2003) were replaced by analytic expressions, the
parameters of which are given in Table 5. One main difference
between the Galaxia and Besançon models is the value of R0
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Table 6
Constraints on Model Parameters with the Gaussian Distribution Function

Model GCS GAU GCS GAU GCS GAU RAVE GAU RAVE GAU RAVE GAU

U� 10.16+0.41
−0.42 10.28+0.43

−0.43 10.34+0.42
−0.42 11.66+0.16

−0.15 11.45+0.14
−0.14 11.25+0.15

−0.15

V� 6.6+1.3
−1.4 6.33+0.93

−0.97 9.68+0.26
−0.26 15.01+0.37

−0.42 8+0.3
−0.28 7.38+0.1

−0.12

W� 7.14+0.19
−0.18 7.11+0.19

−0.19 7.14+0.18
−0.18 7.692+0.099

−0.082 7.688+0.085
−0.091 7.625+0.088

−0.082

σ thin
R 41.2+1.4

−1.3 47+1.1
−1.1 41.5+1.4

−1.3 36.6+1
−1.1 39.26+0.67

−0.69 39.69+0.62
−0.65

σ thin
φ 27.12+0.89

−0.86 31.61+0.8
−0.79 27.83+0.88

−0.88 24.97+0.43
−0.36 25.56+0.33

−0.37 25.34+0.35
−0.33

σ thin
z 23.74+0.79

−0.74 27.28+0.64
−0.63 23.89+0.79

−0.74 24.22+0.64
−0.47 25.69+0.22

−0.2 25.92+0.21
−0.2

σ thick
R 65.9+4.1

−3.7 67.7+2.7
−2.7 58.74+0.91

−0.79 58.43+0.86
−0.76 57.87+0.58

−0.56

σ thick
φ 40.9+3.3

−3.1 40+2.9
−2.8 40.47+0.51

−0.48 37.16+0.5
−0.53 38.37+0.48

−0.54

σ thick
z 38.5+2.8

−2.5 38.7+2.7
−2.6 40.55+0.46

−0.49 40.4+0.5
−0.5 39.41+0.48

−0.48

βR 0.201+0.019
−0.019 0.268+0.015

−0.014 0.204+0.019
−0.019 0.06+0.023

−0.029 0.135+0.015
−0.015 0.164+0.012

−0.013

βφ 0.271+0.019
−0.019 0.349+0.016

−0.015 0.284+0.019
−0.019 0.132+0.014

−0.013 0.17+0.012
−0.012 0.164+0.012

−0.012

βz 0.36+0.02
−0.021 0.432+0.015

−0.016 0.365+0.02
−0.02 0.312+0.026

−0.02 0.37 0.37

1/Rthin
σ 0.171+0.046

−0.043 0.179+0.028
−0.027 0.073 −0.0556+0.0078

−0.0077 0.0188+0.0055
−0.0053 0.073

1/Rthick
σ 0.148+0.04

−0.035 0.132 0.1123+0.0044
−0.0043 0.0907+0.0035

−0.0036 0.132

Θ0 226.84 226.84 233 207.2+1.9
−1.9 229.2+1.8

−2 234.1+1.4
−1.4

R0 8 8 8 8 8 8

αz 0 0 0.047 0 0.0738+0.0021
−0.0023 0.047

αR 0 0 0 0 0 0

χ2
red RAVE 2.55 3.19 2.49 1.89 1.64 1.79

χ2
red GCS 3.09 3.48 3.15 6.60 5.81 5.10

Notes. Parameters that do not have error bars were fixed. Missing values imply parameters that are not applicable for that
model. The model runs are named as follows: survey name as RAVE or GCS, type of model as GAU for Gaussian and
SHU for Shu. Velocities are in km s−1 and distances in kpc. Quoted uncertainties are purely random and do not include
systematics.

and the solar motion with respect to the LSR. Also, Galaxia
uses slightly different values of Rσ . In the Besançon model, the
velocity dispersions are assumed to saturate abruptly at around
τsat = 6.5 Gyr. Moreover, the velocity dispersion of the thick
disk does not have any radial dependence; hence, the value of
Rthick

σ only contributes to the calculation of the asymmetric drift.
Neither of these Ansätze are assumed in our analysis.

Finally, in the Besançon model, the metallicity [Fe/H] of the
thick disk is assumed to be −0.78 with a spread of 0.3 dex. The
spread is not taken into account when assigning magnitudes
and colors from isochrones. This was done so as to prevent the
thick disk from having a horizontal branch. We do not make this
ad hoc assumption. Since our data do not have a strong color-
sensitive selection, this has a negligible impact on our kinematic
study.

We now discuss the results obtained from fitting models to
the RAVE and the GCS data. The best-fit parameters and their
uncertainties obtained using MCMC simulation for different
models and data are shown in Tables 6 and 7. Note that the
uncertainties quoted in the table are purely random and do
not include systematics. We discuss systematics separately in
Section 6.8. We begin by discussing results from the Gaussian
DF before proceeding to the Shu DF.

5.1. Gaussian Models

First, we concentrate on GCS data (Column (1) of Table 6).
For GCS we find that all the values are well constrained.
However, percentage-wise Rthin

σ , Rthick
σ , and V� have larger

uncertainties as compared to other parameters. In Figure 5,
where fits from Column (1) are plotted, it can be seen that
the model is an acceptable fit to the data. The reduced χ2

values are quite high, especially in comparison with the mock
models. This is mainly due to a significant amount of structure
in (U,V ) velocity space (see Figure 5). The βz, σ thin

z , σ thick
z ,

and σ thick
R parameters are close to the corresponding Besançon

values but show other differences. The most notable differences
are that our value for Rthin

σ is smaller, Rthick
σ is longer, and

σ thick
φ is lower. Other minor differences are as follows. Our

βR and βφ are lower, and so are the velocity dispersions
σ thin

R , σ thin
φ . The thin-disk velocity dispersions are strongly

correlated to β values, so fixing β to higher values will drive
the corresponding thin-disk velocity dispersions closer to the
Besançon values. Column (2) in Table 6 shows the results for
the case where a separate thick disk is not assumed (the thick-
disk stars are labeled as thin-disk in the model). In this case,
β and σ increase, while Rthin

σ decreases, which is expected
since the thin disk has to accommodate the warmer thick-disk
component.

We now discuss results for the RAVE data, beginning with
the model where αz = 0 (Column (4) of Table 6). Surprisingly,
Rthin

σ is found to be negative, whereas Rthick
σ is positive. The

value of Θ0 is found to be significantly less than that reported
in the literature. The βR and βφ values are also too small. We
note that the βz value in RAVE has more uncertainty than that
in GCS, which we had also noted in the tests on mock data.
From now on we keep βz = 0.37, a value we get from GCS.
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Figure 5. Comparison of model velocity distributions with that of GCS data. The right panels differ from the left only in range and scale of axes. The model used is
the best-fit Gaussian (Column (1) of Table 6) and the Shu model (Column (1) of Table 7) for the GCS data. Both the models are acceptable fits to the data. Significant
structures can be seen in the velocity space.

(A color version of this figure is available in the online journal.)

Table 7
Constraints on Model Parameters with the Shu Distribution Function

Model GCS SHU GCS SHU GCS SHU RAVE SHU RAVE SHU RAVE SHU RAVE SHU

U� 10.02+0.39
−0.4 10.16+0.39

−0.4 10.23+0.39
−0.4 11.2+0.13

−0.13 10.92+0.13
−0.14 10.96+0.14

−0.13 11.05+0.15
−0.16

V� 9.95+0.3
−0.3 9.81+0.28

−0.28 9.83+0.3
−0.29 9.71+0.12

−0.11 7.53+0.16
−0.16 7.53+0.16

−0.16 7.62+0.13
−0.16

W� 7.14+0.19
−0.19 7.13+0.18

−0.19 7.12+0.18
−0.19 7.536+0.085

−0.086 7.542+0.089
−0.093 7.539+0.095

−0.09 7.553+0.086
−0.09

σ thin
R 38.14+0.98

−0.94 39.99+0.91
−0.91 42.71+0.83

−0.8 42.37+0.61
−0.66 39.78+0.81

−0.73 39.67+0.63
−0.72 39.56+0.66

−0.7

σ thin
z 23.39+0.77

−0.73 23.63+0.85
−0.8 25.91+0.64

−0.6 26.85+0.85
−0.92 24.7+0.66

−0.66 25.73+0.21
−0.21 25.72+0.23

−0.25

σ thick
R 70.1+3.7

−5.5 45.9+1.8
−1.8 38.84+1.2

−0.96 42.31+1
−0.9 42.43+0.95

−1 43.23+0.96
−1.1

σ thick
z 39+3.1

−3.3 32.6+2.3
−2.2 29.15+0.87

−0.79 34.66+0.61
−0.58 34.3+0.51

−0.57 34.48+0.54
−0.53

βR 0.213+0.014
−0.014 0.237+0.013

−0.013 0.273+0.011
−0.011 0.236+0.011

−0.011 0.198+0.014
−0.014 0.195+0.011

−0.013 0.192+0.012
−0.013

βz 0.361+0.02
−0.02 0.366+0.021

−0.021 0.415+0.016
−0.016 0.398+0.03

−0.029 0.328+0.027
−0.024 0.37 0.37

1/Rthin
σ 0.0665+0.0084

−0.0086 0.073 0.0771+0.0059
−0.0061 0.0673+0.0028

−0.0028 0.0722+0.0035
−0.0032 0.073+0.0037

−0.003 0.0724+0.0031
−0.0031

1/Rthick
σ 0.0086+0.022

−0.0066 0.132 0.1555+0.0046
−0.0064 0.1335+0.0046

−0.0056 0.1328+0.005
−0.0051 0.13+0.0056

−0.0046

Θ0 226.84 232 226.84 212.6+1.4
−1.3 232.8+1.7

−1.6 231.9+1.4
−1.5 235.02+0.86

−0.83

R0 8 8 8 8 8 8 8

αz 0 0.0471 0 0 0.048+0.0019
−0.0018 0.0471+0.0016

−0.0019 0.0471+0.0019
−0.0019

αR 0 0 0 0 0 0 0.67+0.25
−0.26

χ2
red RAVE 2.07 1.80 2.40 1.52 1.43 1.42 1.42

χ2
red GCS 3.85 3.86 4.08 5.15 5.57 5.42 5.46

Note. See Table 6 for further description.
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Figure 6. Comparison of model velocity distributions with that of RAVE data. Projections of radial velocity along U, V, and W directions are shown. The right panels
differ from the left only in range and scale of axes. The top panel is for stars with (|b| < 45) and ((|l| > 45)||(|l − 180| > 45)), the middle panel is for stars with
(|b| < 45) and ((|l| < 45)||(|l − 180| < 45)), and the bottom panel is for stars with |b| > 45. The model used is the best-fit Gaussian (Column (5) in Table 6)
and the Shu model (Column (6) of Table 7) for the RAVE data. The Shu model clearly models the wings of V ′ better than the Gaussian model, especially in region
−200 km s−1 < V ′ < −150 km s−1 and V ′ > 80 km s−1, which is dominated by a thick disk. A slight mismatch at V ′ ∼ 0 is also seen.

(A color version of this figure is available in the online journal.)

We checked and found that fixing βz has negligible impact on
other parameters.

We now let αz free, and this results in a higher value of Θ0.
The value of Ω� is now close to the proper motion of Sgr A*.
Allowing for a vertical dependence of circular speed decreases
Rthin

σ while increasing βR and βφ . However, these values are
still lower than the GCS values. It can be seen from red lines
in Figure 6 that the model does not fit well the projected V
components of velocity. Clearly, there are some problems with
this model.

We now compare RAVE and GCS results using Columns (6)
and (3), where we fix Rthin

σ , Rthick
σ , and αz to values that we will

get later from the Shu model. Having the same value of Rσ

in both RAVE and GCS makes it easier to compare the other
parameters. Naturally, fixing some of the variables leads to an
increased χ2

red. We find that most of the values agree to within
4σ of each other. The two exceptions are βφ and V�, which are
higher for GCS.

To summarize, we find that the model parameters that best
fit the RAVE data show important differences from those from
GCS. The models differ mostly in their values of Rthin

σ and Rthick
σ ,

with the RAVE values being systematically too high. If Rthin
σ and

Rthick
σ are fixed to be the same, then V� in RAVE is found to

be lower by about 2 km s−1. The values of βφ and βR are also
slightly lower in RAVE and are better constrained than βz.

5.2. Shu Models

First, we discuss RAVE results for the case where most of
the parameters were free (Column (6) of Table 7). We find that
Rthin

σ is positive, unlike for the Gaussian model. It can be seen
from Figure 6 that the wings of the V component of velocity are
better fitted by the Shu model than the Gaussian model. Another
important feature is that σR for the thick disk is almost the same
as for the thin disk. The σz values are also not too far apart.
Apparently, as compared to the Gaussian model, the velocity
dispersions for the thick disk are very similar to that of the old
thin disk in the Shu model. However, Rthick

σ is shorter than Rthin
σ .

If αz is set to zero, Θ0 is underestimated (Column (4)). If we
impose the measured proper motion of Sgr A* as a prior, we can
constrain the radial gradient of circular speed, which is found to
be less than 1 km s−1 kpc−1 (Column (7)). Comparing Columns
(5) and (6), it can be seen that fixing βz to 0.37 mainly changes
σ thin

z , while the other parameters are relatively unaffected.
The thick-disk parameters for the GCS sample (Column (1)

of Table 7) differ significantly from those for the RAVE sample.
This is mainly due to the GCS having very few thick-disk stars.
We next fix Rthick

σ = 7.58 kpc and Rthin
σ = 13.7 kpc for GCS.

Doing so improves the agreement between the two sets for the
thick disk, while the change in χ2

red is very small (Column (2)).
Most RAVE parameters agree to within 4σ of GCS, except for
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Figure 7. Comparison of model velocity distributions with that of GCS data. The models used correspond to Columns (2) and (6) of Table 7. These are Shu models
that (a) best fit the GCS data, but with a few parameters fixed, and (b) best fit the RAVE data. The positive wing of V is slightly overestimated by the RAVE best-fit
model.

(A color version of this figure is available in the online journal.)

V�, which is lower by about 2 km s−1 for RAVE. Finally, we
also test models where the thick disk is ignored (Column (3)).
As in the case of Gaussian models, this leads to an increase in
β and σ and decreasing Rthin

σ .
In Figure 5 the best-fit Gaussian and Shu models for GCS

are compared. Unlike RAVE, both models provide good fits. In
fact, to discriminate the models, one requires a large number
of warm stars that can sample the wings of the V distributions
with adequate resolution. The GCS sample clearly lacks these
characteristics. Next, in Figure 7 we plot the GCS Shu model
alongside the RAVE Shu model (Columns (2) and (6) of Table 7)
and compare them with the GCS velocities. It can be seen that
both are acceptable fits. However, the RAVE Shu model slightly
overestimates the right wing of the GCS V distribution. Note
that in Figure 6 a slight mismatch at V ′ ∼ 0 can be seen; the
cause for this is not yet clear.

6. DISCUSSION

6.1. Correlations and Degeneracies

Not all parameters are independent. The dominant correla-
tions are shown in Figures 8–11 where pairwise posterior dis-
tributions of parameters are plotted. The implication of any
correlation is that a change in one of the values also changes
the other value without affecting the quality of the fit. In other
words, a precise value of one correlated quantity needs to be
known in order to determine the other. We find that the β

values are strongly correlated with the corresponding σ thin val-
ues. This is mainly because we do not have enough information
in the data to estimate the ages of stars. The model specifies the
prior on the ages of stars, and the data give the velocities. The
degeneracy reflects the fact that during fitting β can be adjusted
while keeping the mean velocity dispersion constant.

In both thin and thick disks σR is correlated with Rσ . These
correlations are stronger for the Shu model than the Gaussian
model. To get a good estimate of Rσ , ideally one would require
a sample of stars distributed over a large volume. In the absence
of an extended sample, the constraint on Rσ comes from the
fact that it also determines the vφ distribution. The amount of
asymmetric drift increases with σR and decreases with Rσ (see
Equation (6)). If the asymmetric drift is fixed, this naturally
leads to the correlation between Rσ and σR . In the Shu model
the effective velocity dispersion

√
〈v2

R〉 not only is proportional
to σR but also decreases with Rσ . So one can keep the effective
velocity dispersion constant by decreasing both Rσ and σR at
the same time. This makes the correlation in the Shu model
stronger.

Also, V� is correlated with Rthin
σ , and this relation is stronger

for the Gaussian model. This makes it difficult to determine
V� and Rσ reliably using the Gaussian models. The Shu model
does not have this problem because in it the azimuthal motion
is coupled to the radial motion, so it has three fewer parameters,
i.e., has fewer degrees of freedom. This helps to resolve the
Rthin

σ − V� degeneracy.
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When fitting Shu models to RAVE, we find that an anti-
correlation exists between thin- and thick-disk parameters, e.g.,
(σ thin

R , σ thick
R ), (σ thin

z , σ thick
z ), and (Rthin

σ , Rthick
σ ). This is mainly

because we do not have any useful information about the ages
of stars.

We now discuss the parameters Θ0 and αz, which were free
only for RAVE data. The value of αz is correlated with Θ0 and
anti-correlated with V�. The Θ0 parameter is anti-correlated
with both U� and Rthin

σ . For the GCS data, the (Θ0, R
thin
σ )

correlation is so strong that it is difficult to get meaningful
constraints on Θ0, so the latter was fixed.

6.2. Solar Peculiar Motion

Among the three components of solar motion, U� and W�
are only weakly correlated with other variables and give similar
values for both Gaussian and Shu models. The only major
dependence of U� is for RAVE, where it is anti-correlated with
Θ0 by about −0.5. So models with αz = 0 that underestimate Θ0,
will overestimate U�. For RAVE we get W� = 7.54±0.1 km s−1

and U� = 10.96 ± 0.14 km s−1 (Column (6) of Table 7). GCS
values for W� and U� are lower by about 0.4 and 0.8 km s−1,
respectively, but their 3σ range matches with RAVE (Column
(2) of Table 7). The small mismatch could be either due to large-
scale gradients in the mean motion of stars (Williams et al. 2013)
in RAVE or due to kinematic substructures in GCS.

Our GCS results (Column (2) of Table 7) are in excellent
agreement with those of Dehnen & Binney (1998b) but differ
from those of Schönrich et al. (2010) for U� by 1.0 km s−1.
Nevertheless, U� is well within their quoted 2σ range. The
RAVE U� agrees with Schönrich et al. (2010). Interestingly,
with the aid of a model-independent approach, Schönrich (2012)
finds from SDSS stars U� = 14.0 ± 0.3 km s−1, but with a
systematic uncertainty of 1.5 km s−1. The systematic errors in
distances and proper motion can bias this result. Additionally,
the analyzed sample not being local, his results can also be
biased if there are large-scale streaming motions.

We now discuss our results for V�. For Gaussian models the
estimated V� value depends strongly on the choice of Rσ values
and it is difficult to get a reliable value for either of them. For
the Shu model, V� depends on whether αz is fixed; in fact, they
are anti-correlated (see Figure 11). For αz = 0, the GCS and
RAVE V� agree with each other, but when αz is free, V� is
2 km s−1 lower from RAVE than from GCS (Columns (2) and
(6) of Table 7). The αz = 0 model not only has a higher χ2

red
but, as we will discuss later, also yields a low value of Θ0, so we
consider this model less useful. The most likely cause for the
difference between RAVE and GCS V� is the significant amount
of kinematic substructures in the distribution of the V component
of the GCS velocities (Figure 7). It can be seen in Figure 7 that
the best-fit RAVE model, in spite of apparently having low V�,
is still a good description of the GCS data. Moreover, in GCS a
dominant kinematic structure can be seen at V ∼ −20 km s−1

(the Hyades and the Pleiades), lending further support to the
idea that GCS probably overestimates V�. However, this can
also be because our formulation for the vertical dependence of
kinematics is not fully self consistent (see Sections 2.4 and 6.8).

The need to revise V� upward from the value of 5.2 km s−1

given by Dehnen & Binney (1998b) has been extensively
discussed (Binney 2010; McMillan & Binney 2010; Schönrich
et al. 2010). Binney (2010) suggests a value of 11.0 km s−1 after
randomizing some of the stars to reduce the impact of streams,
while Schönrich et al. (2010) get V� = 12.24 ± 0.47 km s−1.
Our RAVE value of V� = 7.5 ± 0.2 is significantly lower

than this (Column (6) of Table 7). Our GCS value of V� =
9.8 ± 0.3 km s−1 is also lower than both of them (Column (2)
of Table 7).

Recently, Golubov et al. (2013) determined V� = 3.06±0.68
by binning the local RAVE stars in color and metallicity bins
and applying an improved version of the Stromberg relation.
Their estimate is even lower than that of Dehnen & Binney
(1998b). The application of the Stromberg relation demands
the identification of subpopulations that are in dynamical
equilibrium and have the same value for the slope in the relation.
Binning by color fails to satisfy these requirements for the
reasons given by Schönrich et al. (2010). Golubov et al. do split
their sample by metallicity as well as color, but the metallicities
are quite uncertain and the bins are quite broad, so a bias due to
the selected subpopulations not obeying the same linear relation
can be expected.

The discrepancy for the GCS with Schönrich et al. (2010)
could be due to either differences in fitting methodologies or
differences in the models adopted, with the latter being the
most likely cause. The model used here and by Schönrich et al.
(2010) is based on the Shu DF, but still there are some important
differences. We have a separate thick disk, while in their case
the thick disk arises naturally owing to radial mixing. The forms
of σR(L) and Σ(L) also differ (L being angular momentum).
Our form of σR(L) is the same as that used by Binney (2010),
while Schönrich et al. (2010) compute σR(L) so as to satisfy
〈v2

R,thin〉 ∝ e−R/1.5Rd . In our case 〈v2
R,thin〉(R) depends implicitly

on Rσ and β, and both of these parameters are constrained
by data. The Σ(L) in Schönrich et al. (2010) comes from
a numerical simulation involving the processes of accretion,
churning, and blurring, while in our case it comes directly from
the constraint that Σ(R) ∝ exp(−R/Rd ). The prescription for
metallicity in Schönrich et al. (2010) is also very different from
ours.

6.3. The Circular Speed

In a recent paper, Bovy et al. (2012a) used data from the
APOGEE survey and analyzed stars close to the midplane of
the disk to find Θ0 = 218 ± 6 km s−1 and V� = 26 ± 3 km s−1.
The resulting angular velocity Ω� = (Θ0 + V�)/R0 agrees with
the value of 30.24 ± 0.11 km s−1 kpc−1 as estimated by Reid
& Brunthaler (2004) using the Sgr A* proper motion or as
estimated by McMillan & Binney (2010) using masers (Ω�
in the range 29.9–31.6 km s−1 kpc−1). However, Bovy et al.
(2012a) found that V� is about 14 km s−1 larger than the value
measured in the solar neighborhood by GCS. As a way to
reconcile their high V�, Bovy et al. (2012a) suggest that the
LSR itself is rotating with a velocity of ∼12 km s−1 with respect
to the RSR (rotational standard of rest as measured by circular
speed in an axis-symmetric approximation of the full potential
of the Milky Way).

For RAVE data, we get Θ0 = 232 ± 1.7 km s−1 and Ω� =
29.9 ± 0.3 km s−1 kpc−1, which agrees with the proper motion
of Sgr A*, 30.24 ± 0.1 km s−1 kpc−1. Hence, the RAVE data
suggest that the LSR is on a circular orbit and is consistent
with RSR. Our value αz = 0.047 is slightly higher than the
value 0.0374 predicted by analytical models of the Milky Way
potential Figure 1. This is expected because in our formalism,
the parameter αz also contributes to the decrease in mean rotation
speed with height. If we explicitly put a prior on Ω�, then we
have the liberty of constraining one more parameter, and we use
it to constrain the radial gradient of circular speed αR . Doing so,
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Table 8
Comparison of Values of β as Estimated by Different Sources

Source βR βφ βz

Fit to Robin et al. (2003) 0.33 0.33 0.33

Nordström et al. (2004) 0.31 ± 0.05 0.34 ± 0.05 0.47 ± 0.05

Seabroke & Gilmore (2007) 0.48 ± 0.26

Holmberg et al. (2007) 0.38 0.38 0.54

Holmberg et al. (2009) 0.39 0.40 0.53

Aumer & Binney (2009) 0.307 0.430 0.445

Just & Jahreiß (2010) 0.375

Our GCS thin only 0.27 ± 0.02 0.35 ± 0.02 0.43 ± 0.02

Our GCS thin+thick 0.20 ± 0.02 0.27 ± 0.02 0.36 ± 0.02

Our RAVE thin+thick 0.19 ± 0.01 0.3–0.4

we find a small gradient of about 0.67 km s−1 kpc−1 (Column
(7) of Table 7), and Θ0 increases to 235 km s−1.

We find that the parameter αz that controls the vertical depen-
dence of circular speed plays an important role in determining
Θ0. For models with αz = 0, Θ0 is underestimated and we end
up with Θ0 = 212 ± 1.4. This is in rough agreement with Bovy
et al. (2012a), but V� is not. The resulting angular velocity Ω�
is also much lower than the value obtained from the proper mo-
tion of Sgr A*. If, on the contrary, αz is free, we automatically
match the proper motion of Sgr A* and get a value of V� that is
similar to that from the local GCS sample.

6.4. The Age–Velocity Dispersion Relation (AVR)

We now discuss our model predictions for the AVR in the
thin disk, specifically the parameters βz, βφ, βR , σ thin

z , σ thin
φ , and

σ thin
R . We find βR < βφ < βz. The GCS βR,φ,z values were

similar for both Gaussian and Shu models. The RAVE value of
βR from the Shu model also agrees with these GCS values. The
value of βz is difficult to determine precisely with RAVE, so, we
used the corresponding GCS value in the fits. The values of βR,φ

from RAVE with the Gaussian model are systematically lower
than the GCS values. Since the RAVE Gaussian model did not fit
the data well, we give less importance to its β values and ignore
them for the present discussion. Overall, results in Column (1)
of Table 6 provide a good representation of our predictions and
are shown alongside literature values in Table 8.

Our values of β and the velocity dispersion in the solar
neighborhood for 10 Gyr old stars, σ thin

R,φ,z, depend on whether
the thick disk is considered a distinct component: when only
one component is provided, such that the thick disk has to be
accommodated by the old tail of the thin disk, these quantities
are naturally higher (Column (2) of Table 6). The values we
recover for σ thin

R,φ,z are very similar regardless of which survey or
which model we employ.

We now compare our results with previous estimates. In the
Besançon model, the AVR for the thin disk was based on an
analysis of Hipparcos stars by Gomez et al. (1997). Sharma et al.
(2011) fitted their tabulated values using analytical functions,
and the values are given in Table 5. Nordström et al. (2004)
used their ages for individual GCS stars to find (βR, βφ, βz) =
(0.31, 0.34, 0.47). Seabroke & Gilmore (2007), using the same
data, concluded that the error bars need enlarging and pointed
out that excluding the Hercules stream increases βz to 0.5.

Holmberg et al. (2007) and Holmberg et al. (2009) updated
the data with new parallaxes and photometric calibrations and
found (βR, βφ, βz) = (0.39, 0.40, 0.53). By contrast, Just &
Jahreiß (2010) used a selection of Hipparcos stars and an
elaborate model of the solar cylinder to estimate βz = 0.375.
Aumer & Binney (2009) analyzed revised Hipparcos data
with a refinement of the approach of Binney et al. (2000).
Their analysis used only the variation with color of velocity
dispersion and number density; they did not use age estimates
for individual stars. The advantage of this approach is that one
can include main-sequence stars with colors that span a much
wider range than the GCS catalogue does. The disadvantage is
that only proper motions can be used. They found (βR, βφ, βz) =
(0.307, 0.430, 0.445). Since they did not distinguish the thick
disk, their β values are closer to the values (0.268, 0.349, 0.432)
we obtain without a thick disk. For the velocity dispersions,
however, Aumer & Binney (2009) find (σ thin

R , σ thin
φ , σ thin

z ) =
(41.90, 28.82, 23.83), which agree better with our values when
we include a thick disk.

As (Table 8) shows, our values for β are slightly lower than
those from previous studies when we do not include a thick
disk, and significantly lower when a thick disk is included.
While uncertainty in ages remains a big worry in the analysis of
Holmberg et al. (2009), the difference between our results and
those of Aumer & Binney (2009) is most likely due to different
methods, the main differences being that we use many fewer
stars and use line-of-sight velocities rather than proper motions.
In addition, the density laws assumed for the distribution of
stars in space are different. In Figure 12, we show the velocity
dispersion as a function of Strömgren b−y color. Although we
have not used this color, our fitted model correctly reproduces
dispersion as a function of color. The Shu model is found to
overpredict σV for (b − y) < 0.35 but only slightly.

The ratio of σz/σR and the βi values are useful for under-
standing the physical processes responsible for heating the disk.
Spitzer & Schwarzschild (1953) first showed that scattering of
stars by gas clouds can cause velocity dispersion to increase
with age. This process was extensively analyzed by Binney &
Lacey (1988), but they predicted a value of σz/σR from cloud
scattering that is too large because they assumed an isotropic dis-
tribution of star-cloud impact parameters. When the anisotropy
of impact parameters is taken into account, in the steady state
σR/σz = 0.62 (Ida et al. 1993; Shiidsuka & Ida 1999; Sellwood
2008). Hänninen & Flynn (2002) showed that with GMCs one
gets βR = 0.2 and βz = 0.25, compared with our favored val-
ues βR = 0.20, βz = 0.36. However, the population of massive
gas clouds is not numerous enough to account for the mea-
sured acceleration of thin-disk stars—the role of clouds must
be to convert random motion in the plane into random motion
vertically (Jenkins 1992; Hänninen & Flynn 2002).

Lacey & Ostriker (1985) and Hänninen & Flynn (2002) have
investigated scattering by ∼107 M� halo objects such as black
holes and find then that βR,z ∼ 0.5 and that σz/σR lies between
0.40 and 0.67. Massive halo objects act differently from GMCs
for several reasons: they are not confined to the disk, they are on
highly noncircular orbits, and they have large escape velocities,
so they can scatter through large angles.

For RAVE, from either the Gaussian or Shu models, we
get σ thin

z /σ thin
R 0.65 (Column (6) of Table 6 and Column (6) of

Table 7). The corresponding GCS value is 0.58 (Column (3) of
Table 6 and Column (2) of Table 7). Models without a thick disk
give a similar value for σz/σR . These are values for a 10 Gyr
old population, and we think they agree well with the above
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Figure 8. Marginalized posterior distribution of model parameters. The numbers are the linear Pearson correlation coefficient. Shown is the case of Gaussian model for
GCS data (Column (1) of Table 6). Strong dependency can be seen between β and σ thin values. Additionally, (Rthin

σ , V�), (Rthin
σ , σ thin

R ), (Rthin
σ , βR), and (Rthick

σ , σ thick
R )

also show dependency.

(A color version of this figure is available in the online journal.)

predictions. For the thick disk we find that the Gaussian model
predicts σ thick

z /σ thick
R = 0.68, while the Shu model predicts a

higher value, 0.80.
Heating by cloud scattering predicts βR ∼ βz. Scattering by

spiral arms at Lindblad resonances also heats disks. If spiral
arms are transient, individual resonances are broad, and over
the life of the disk one or more resonances are likely to have
affected every region of the disk. Spirals only increase in-plane
dispersions (Carlberg & Sellwood 1985; Binney & Lacey 1988;
Sellwood 2013). The predicted values of βR are between 0.2 for
high-velocity stars and 0.5 for low-velocity stars. Multiple spiral
density waves (Minchev & Quillen 2006) or a combination of

bar and spirals can also heat up the disk (Minchev & Famaey
2010). When the βi differ from one another, as we find, the axial
ratios of the velocity ellipsoid are functions of age. If βz > βR ,
σz/σR increases with age as τβz−βR , so it is much lower for
younger stars. Aumer & Binney (2009) also find that σz/σR

increases with age and remark that this trend is consistent with
scattering by spiral arms playing a significant role for young
stars.

Recently, Minchev et al. (2013) investigated the AVR for
stars in simulations of disk galaxies and find it to be in rough
agreement with observations. We now compare our results with
their findings. In Figure 13 we plot their predictions for σR and
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Figure 9. Marginalized posterior distribution of model parameters. The numbers are the linear Pearson correlation coefficient. Shown is the case of Shu model for
GCS data (Column (1) of Table 7). The same dependencies as in Figure 8 can be seen. Dependency of (Rthin

σ , V�) has gotten weaker, while that of (Rthick
σ , σ thick

R ) has
become stronger.

(A color version of this figure is available in the online journal.)

σz for stars in a solar cylinder defined by 7 < R < 9 kpc. The
red curves show our AVR from Equation (8) with βz = 0.37
and βR = 0.23, values that fit both the RAVE and GCS data
well when using the Shu model (Column (2) of Table 7). It
can be seen that for ages less than 7 Gyr, the adopted β values
correctly reproduce the profiles seen in simulations. However,
the simulations require a smaller value σz/σR ∼ 0.5 than
the data require, and the red curves in Figure 13 have been
individually scaled to fit the simulations. Hence, although the
normalization constant σ thin

z is roughly in agreement with our
results for the Galaxy, the normalization constant σ thin

R is too

high by about 10 km s−1. There is a slight hint that in the
simulations σR flattens beyond 5 Gyr, but it is also consistent
with our power-law prescription. Since the simulation data are
for 7 < R < 9 kpc, and the density of stars and the velocity
dispersion increase inward, the dispersions in the simulations
are expected to be slightly high compared to dispersions at
R = R0. In our model the thin disk started forming 10 Gyr ago
(solid line), and stars older than this belong to the thick disk
with a constant age of 11 Gyr (shown by red triangles). This is
an effective if rather crude representation of what is found in
the simulations.
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Figure 10. Marginalized posterior distribution of model parameters. The numbers are the linear Pearson correlation coefficient. Shown is the case of Gaussian model
for RAVE data (Column (5) of Table 6). Strong dependency can be seen between β and σ thin values. Additionally, (Rthin

σ , V�) and (Rthick
σ , σ thick

R ) also show dependency.
Finally, the Θ0 is anti-correlated to U� and αz to V�.

(A color version of this figure is available in the online journal.)

6.5. The Thick Disk

First, we discuss our results for the Gaussian model. Our
values for (σ thick

R , σ thick
φ , σ thick

z ) for the thick disk from fitting
the Gaussian model to GCS (Column (3) of Table 6) are
in good agreement with results of Soubiran et al. (2003)
(39 ± 4, 39 ± 4, 63 ± 6) but differ from those of Robin et al.
(2003) regarding σ thick

φ . The RAVE σ thick
R is lower than GCS

by 7 km s−1 (Column (6) of Table 6), but the other dispersions
match up with GCS.

In the Gaussian model the thick-disk velocity dispersions are
much larger than those of the old thin disk. In the Shu models, we

find that the thick-disk dispersions are very similar to the old thin
disk (Column (6) of Table 7). However, Rthick

σ is much shorter
than Rthin

σ . The Gaussian and Shu models differ in their estimates
for the thick-disk velocity dispersions for the following reason.
In the Shu model, the parameter σ 2

R , which controls the velocity
dispersion, is a function of age τ and guiding radius Rg and
is not equal to the velocity dispersion v2

R(τ, R). For a positive

Rσ , v2
R(τ, R) = ∫

σ 2
R(τ, Rg)P (Rg|R, τ )dRg > σ 2

R(τ, Rg = R).
In a warm disk there are generally a significant number of stars
with Rg < R at radius R. Decreasing Rσ not only makes stars at
small radii hotter but also makes them more likely to be found
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Figure 11. Marginalized posterior distribution of model parameters. The numbers are the linear Pearson correlation coefficient. Shown is the case of Shu model for
RAVE data (Column (6) of Table 7). Strong dependency can be seen between β and σ thin values. Additionally, (Rthin

σ , V�), (Rthin
σ , σ thin

R ), (Rthin
σ , βR), and (Rthick

σ , σ thick
R )

also show dependency. Unlike GCS, a dependency of (σ thin
R , σ thick

R ) and (βz, βR) can be seen. Finally, the Θ0 is anti-correlated to U� and αz to V�.

(A color version of this figure is available in the online journal.)

at R > Rg , so decreasing Rσ increases v2
R(τ, R). For the set

of parameters given in Column (6) of Table 7, we find that at
R = R0,

√〈
v2

z,thin

〉
(τ ) = 26.8

(
τ + 0.1

10.1 Gyr

)0.41

km s−1, (33)

√〈
v2

R,thin

〉
(τ ) = 41.4

(
τ + 0.1

10.1 Gyr

)0.22

km s−1, (34)

√〈
v2

z,thick

〉 = 40.0 km s−1, (35)

√〈
v2

R,thick

〉 = 49.4 km s−1, (36)

with 0 < τ < 10 Gyr. So the total thick disk v2
z,R in the solar

neighborhood is still much larger than that of the thin disk.
In the Shu model the dispersions at Rg = R0 of the old thin

disk and the thick disk are similar, consistent with the thick disk

22



The Astrophysical Journal, 793:51 (27pp), 2014 September 20 Sharma et al.

       
0

10

20

30

40

50

σ U
 k

m
/s

       
0

5

10

15

20

25

30

σ V
 k

m
/s

0.20 0.25 0.30 0.35 0.40 0.45 0.50
Stroemgren (b-y)

0

5

10

15

20

25

σ W
 k

m
/s

Model Fit Shu
Model Fit Gauss

GCS
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(A color version of this figure is available in the online journal.)
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(black points). The slopes used are βz = 0.37 and βR = 0.23 for σR = 50.0
and σz = 24.0. The triangles are for the thick disk in our Gaussian models
for GCS.

(A color version of this figure is available in the online journal.)

being merely the tail of the thin disk. Moreover, although Rthick
σ

is much smaller than Rthin
σ , we cannot at this stage exclude a

smooth decrease in Rσ with age. Additionally, our prior on age
and distance distribution assumes a distinct thick disk, e.g., in

Table 9
Constraints on Model Parameters with Bovy et al. (2012a) Gaussian Model

Model RAVE BOVY RAVE BOVY RAVE BOVY RAVE BOVY

U� 10.16+0.15
−0.15 11.78+0.15

−0.15 11.59+0.15
−0.14 10.96+0.14

−0.14

V� 13.36+0.25
−0.22 6.2+0.18

−0.18 8.77+0.28
−0.28 0.032+0.052

−0.024

W� 7.364+0.098
−0.098 7.688+0.09

−0.09 7.694+0.097
−0.089 7.622+0.094

−0.087

σ thin
φ 26.455+0.095

−0.096 33.11+0.29
−0.27 25.83+0.36

−0.38 33.84+0.28
−0.27

σ thin
R 41.39+0.17

−0.16 57.58+0.31
−0.31 41.55+0.57

−0.62 51.44+0.29
−0.27

σ thin
z 22.99+0.12

−0.12 31.55+0.3
−0.3 23.29+0.6

−0.62 33.6+0.29
−0.29

σ thick
φ 37.45+0.5

−0.56

σ thick
R 65.69+0.55

−0.64

σ thick
z 38.84+0.47

−0.52

βR 0.01 0.4584+0.0071
−0.0066 0.193+0.013

−0.012 0.3568+0.0045
−0.0049

βφ 0.01 0.3747+0.0093
−0.009 0.166+0.013

−0.013 0.4151+0.0081
−0.0093

βz 0.01 0.514+0.016
−0.013 0.263+0.025

−0.027 0.588+0.013
−0.016

1/Rthin
σ −0.029+0.003

−0.0035 0.0493+0.0026
−0.0024 0.0116+0.0051

−0.005 0.0418+0.0028
−0.0031

1/Rthick
σ 0.069+0.0038

−0.0039

Θ0 210.8+1.5
−1.5 205.5+1.5

−1.5 213.9+1.6
−1.6 239.1+1.7

−1.9

kad 0.85 0.85 0.85 1.968+0.022
−0.021

Note. See Table 6 for further description.

Figure 3 it can be seen that the distance distribution changes
suddenly at 10 Gyr. This could be responsible for Rthick

σ being
shorter than Rthin

σ , perhaps because all scale lengths decrease
with age as Bovy et al. (2012d) infer.

6.6. The Radial Gradient of Velocity Dispersions

To date, there has been little discussion in the literature
about the parameter Rσ that controls the radial dependence of
velocity dispersion. This choice of the radial dependence is
motivated by the desire to produce disks in which the scale
height is independent of radius. For example, under the epicyclic
approximation, if σz/σR is assumed to be constant, then the scale
height is independent of radius for Rσ = 2Rd (van der Kruit
& Searle 1982; van der Kruit 1988; van der Kruit & Freeman
2011). Lewis & Freeman (1989), using 600 old disk K giants
spanning 1–17 kpc in galactocentric radius, estimate Rσ to be
8.7 kpc for radial velocity and 6.7 kpc for azimuthal velocity.
Ojha et al. (1996), using a survey of UBVR photometry and
proper motions in different directions of the Galaxy, estimated
Rσ = 11 ± 1.6 kpc. Bovy et al. (2012c), using SDSS/SEGUE
data, find Rσ = 7.1 kpc for vertical velocity dispersions.
Bovy et al. (2012a), using APOGEE data, find R0/Rσ to be
between −0.24 and 0.03, for the radial and azimuthal motion.
In our modeling, the radial gradient is assumed to be the same
for all three components.

Our results indicate that for GCS, Rσ is positive for both
Gaussian and Shu models. In the case of RAVE, the Shu model
yields Rσ ∼ 14 kpc, but the Gaussian model requires Rσ to
be negative. Moreover, we find that when the Gaussian model
used by Bovy et al. (2012a) is fitted to the RAVE data, Rσ

is again negative: Rthin
σ = −34 kpc (Column (1) of Table 9),

similar to their result (−0.24 < R0/Rσ < 0.03). Since the Shu
model also fits the data better, we think that negative values of
Rσ obtained with Gaussian models are spurious. The Gaussian
model does not fit the RAVE data well because in a warm disk the
vφ distribution is very skew, and the Shu DF correctly handles
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the asymmetry. Moreover, the Rthin
σ estimate from the Shu model

agrees for both GCS and RAVE, lending further support to the
proposition that the problem is related to the use of the Gaussian
model.

Positive Rσ agrees with the findings of Lewis & Freeman
(1989). It should be noted that in both our analysis and that of
Bovy et al. (2012a) the value of Rσ is strongly influenced by how
the asymmetric drift is modeled. On the other hand, the values
reported by Lewis & Freeman (1989) are a direct measure of
the radial gradient of velocity dispersion. From RAVE data, the
thick disk’s value of Rσ is in general higher than the thin disk’s
value.

6.7. Comparison with Bovy’s Kinematic Model

We carried out a more detailed analysis of the kinematic
model used by Bovy et al. (2012a). We stress that there are
significant differences regarding both data and methodology
between the analysis done by us and that by Bovy et al. (2012a),
and these should be kept in mind when comparing the results.
Their sample is close to the plane |b| < 1.5◦ and lies in the range
30◦ < � < 330◦. Being close to the plane, they cannot measure
vertical motion, but the advantage is that they do not have to
worry about the dependence of asymmetric drift with vertical
height z. The � and b range being different means that their data
and ours probe spatially different regions of the Milky Way. If
the disk is axisymmetric, we hope to get similar answers, but
not otherwise.

Their main analysis uses a single-population Gaussian model
that does not include an AVR, so we set βR ∼ βφ ∼ βz ∼ 0.
They use a modified formula for the asymmetric drift (Equa-
tion (7)). In this formula we set the parameter kad (in the notation
of Bovy et al. 2012a) to 0.85. Our results are shown in Column
(1) of Table 9. As mentioned earlier, using RAVE data and a
Gaussian model, we obtain a negative value of Rthin

σ = −34 kpc,
just as they do, in consequence of modeling a warm population
with a Gaussian model. Our value of Θ0 is also in agreement,
but our σR is much larger than their value, 31.4 km s−1. Their
sample could be dominated by cold stars on account of its prox-
imity to the plane. They find σφ/σR = 0.83, which is higher by
about 0.1 than our ratio for either RAVE or GCS using any type
of model.

They also explored multiple populations with a prior on age
given by an exponentially declining SFR. However, they only
quote Θ0, R0 and σR for it. For multiple populations, their prior
on age for the selected stars ignores the fact that scale height
increases with age. This will probably have little impact on Θ0,
but their σR values cannot be compared with ours. Also, they
assume a priori that βR = βφ = 0.38, but we have shown that
σR depends on the choice of βR , and when we leave β free, we
obtain values that differ from 0.38 (Column (2) of Table 9). If
the thick disk is included, the β values are significantly reduced
(Column (3)). In agreement with Bovy et al. (2012a), we find
that the value of Θ0 is not affected much by the choice of AVR.
Including the thick disk leads to an increase in Θ0 by only
8 km s−1. Interestingly, when kad is left free, we find that the
data favor very high values (Column (4)). This suggests that we
are underestimating the asymmetric drift, most probably owing
to our neglect of the vertical dependence.

6.8. Systematics

Although we get quite precise values for most model param-
eters, there are additional systematic uncertainties that we have

neglected. We performed some additional MCMC runs to inves-
tigate these systematics. The results are summarized in Table 10.
The first set of systematics is due to two parameters that were
kept fixed in our analysis, while the second set is related to our
choice of priors on the age and distance distribution of stars.

The distance of the Sun from the Galactic center R0 and the
radial gradient of circular speed αR were kept fixed at 8.0 kpc and
zero for most of our analysis. This is because these are strongly
correlated with Θ0. Using just the angular position and radial
velocity of RAVE stars, it is not possible to constrain them. The
effect of changing R0 from 7.5 to 8.5 kpc can be seen in Columns
(3) and (4) of Table 10, while the effect of changing αR from zero
to 0.65 km s−1 kpc−1 can be gauged by comparing Columns (1)
and (2) in the same table. Using these tables, if needed one can
obtain values for any given R0 and αR by linearly interpolating
between the respective columns. Increasing αR increases Θ0,
while the other parameters are relatively unaffected. Increasing
R0 increases αz as well as Θ0. Again, there is little change
in other parameters. The value of Ω� was found to decrease
from 30.8 km s−1 kpc−1 at R0 = 7.5 kpc to 29.4 km s−1 kpc−1

at R0 = 8.5 kpc. The above relationship tentatively suggests
that at R0 ∼ 7.92 one can match the proper motion of Sgr A*.
We also checked the effect of setting αz = 0.0374, the value
we expect from analytical models. We found that this makes
Θ0 ∼ 229.2 km s−1 and V� ∼ 8.0, which is not significantly far
from the value we get when αz is free.

We now discuss systematics related to our choice of priors.
Our main prior is that the age and distance distribution of
stars along a particular line of sight is in accordance with
the Besançon model of the Galaxy. Additionally, the distance
distribution for a given IDENIS magnitude of a star depends on
the isochrones that are used in the model. As a crude way to
gauge the sensitivity to our priors in age, we run a model with
βz = βR = 0.01 (Column (7)), which makes the kinematics
of the thin disk independent of age. As expected, the thin- and
thick-disk parameters change. Other than this, αz and Θ0 are
found to increase by 12% and 2%, respectively.

Next, we test the effect of changing the distance prior. This
could be, for example, due to a systematic offset in magnitudes
predicted by the isochrones. For this we alternately increase
and decrease our prior distance distribution by multiplying the
distances by a factor of 1.1 and 0.9. The values of V�, Θ0, and
Rthin

σ show significant changes. It should be noted that this is
only an approximate way to check the sensitivity of our results
on the priors. In reality, if magnitudes predicted by isochrones
are systematically wrong, then the spatial density model that
we use will not match the number count of stars obtained from
photometric surveys. So, the mass density laws of the model
will have to be modified as well. The proper way to do this is
to do a dynamical modeling in which the kinematics and the
spatial distribution of stars are fitted jointly to the observational
data (e.g., Binney 2012b).

The biggest source of systematic uncertainty is related to the
accuracy of the theoretical models that we use. As discussed
earlier in Section 2.4, our treatment of the vertical dependence
of the kinematics is not fully self-consistent. In reality, for a
three-dimensional system, the vertical and planar motions are
coupled to each other. To model such a system properly, one
needs a DF that incorporates the third integral of motion.

Finally, our models will give rise to errors because they are
kinematic rather than dynamical models. Kinematic models
offer greater freedom than physics really allows. For example,
the parameters σR and σφ of the Gaussian model are tightly
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Table 10
Investigation of Systematics

Model RAVE SHU RAVE SHU RAVE SHU RAVE SHU RAVE SHU RAVE SHU RAVE SHU

Distance change 90% 110%

U� 10.96+0.14
−0.13 11.05+0.15

−0.16 10.81+0.15
−0.14 10.98+0.14

−0.15 11.01+0.13
−0.14 10.82+0.15

−0.14 10.71+0.14
−0.14

V� 7.53+0.16
−0.16 7.62+0.13

−0.16 7.39+0.14
−0.14 7.59+0.16

−0.14 8.26+0.15
−0.15 6.81+0.15

−0.16 7+0.15
−0.16

W� 7.539+0.095
−0.09 7.553+0.086

−0.09 7.52+0.085
−0.088 7.535+0.082

−0.089 7.553+0.078
−0.091 7.53+0.09

−0.083 7.517+0.088
−0.088

σ thin
R 39.67+0.63

−0.72 39.56+0.66
−0.7 39.27+0.56

−0.62 39.45+0.67
−0.61 39.23+0.74

−0.6 40.09+0.59
−0.49 31.2+0.12

−0.14

σ thin
z 25.73+0.21

−0.21 25.72+0.23
−0.25 25.69+0.22

−0.2 25.67+0.23
−0.23 25.68+0.25

−0.21 25.77+0.18
−0.22 17.57+0.13

−0.12

σ thick
R 42.43+0.95

−1 43.23+0.96
−1.1 42.98+0.86

−0.73 42.67+0.96
−0.72 43.51+0.85

−0.82 41.28+0.71
−0.94 48.51+0.61

−0.6

σ thick
z 34.3+0.51

−0.57 34.48+0.54
−0.53 34.48+0.58

−0.56 34.66+0.52
−0.55 34.8+0.55

−0.6 33.8+0.55
−0.55 37.99+0.41

−0.43

βR 0.195+0.011
−0.013 0.192+0.012

−0.013 0.188+0.01
−0.011 0.192+0.013

−0.012 0.188+0.013
−0.013 0.2018+0.01

−0.0093 0.01

βz 0.37 0.37 0.37 0.37 0.37 0.37 0.01

1/Rthin
σ 0.073+0.0037

−0.003 0.0724+0.0031
−0.0031 0.0752+0.0034

−0.0034 0.0721+0.0028
−0.0026 0.0824+0.0038

−0.0031 0.0631+0.0029
−0.0027 0.0983+0.0034

−0.0024

1/Rthick
σ 0.1328+0.005

−0.0051 0.13+0.0056
−0.0046 0.1357+0.004

−0.0045 0.126+0.0035
−0.0048 0.1356+0.004

−0.0044 0.1319+0.005
−0.0036 0.1022+0.0034

−0.0034

Θ0 231.9+1.4
−1.5 235.02+0.86

−0.83 223.3+1.3
−1.4 242.5+1.6

−1.5 249.8+1.6
−1.5 218.9+1.5

−1.4 237.3+1.7
−1.6

R0 8 8 7.5 8.5 8 8 8

αz 0.0471+0.0016
−0.0019 0.0471+0.0019

−0.0019 0.0532+0.0017
−0.0017 0.0439+0.0016

−0.0017 0.0504+0.0018
−0.0018 0.0462+0.0016

−0.0018 0.0528+0.0019
−0.0019

αR 0 0.67+0.25
−0.26 0 0 0 0 0

coupled, as are βR and βφ . The Shu model has fewer free
parameters and so is less open to this criticism, but it fails
to take into account the coupling between the vertical profiles
of σR and the mean-streaming velocity vφ (e.g., Binney 2012a).
It is not unreasonable to hope that the values that emerge from
the fits for fundamentally superfluous parameters are similar
to the values truly mandated by physics, but noise in the data
may confound this hope. Clearly, we should proceed as quickly
as possible to fitting RAVE with dynamical models like those
developed by Binney (2012a).

7. SUMMARY AND CONCLUSIONS

In this paper we have constrained the kinematic parameters
of the Milky Way disk using stars from the RAVE and the GCS
surveys. To constrain kinematic parameters, we use analytic
kinematic models based on the Gaussian and Shu DFs. We use
these DFs, Padova stellar tracks (Marigo et al. 2008; Bertelli
et al. 1994), and the selection functions of the surveys to predict
the likelihood of each observed star. For GCS data, which
has full phase-space information for the stars, we compute the
likelihood in (x, v) phase space. For RAVE data, we choose to
fit the likelihood in (�, b, vlos) space to avoid use of uncertain
distances and proper motions. We explored the full posterior
distribution of model parameters using the MCMC technique.
The parameters constrained include the solar peculiar motion
(U�, V�,W�), the circular speed at the Sun Θ0, a parameter αz

that controls the vertical gradient of R∂Φ/∂R, the AVRs (via
βR,φ,z, σ thin

R,φ,z, and σ thick
R,φ,z), and the scale lengths on which the

dispersions vary, Rthin
σ and Rthick

σ . Our results for both RAVE and
GCS data are summarized in Tables 6 and 7. The final best-fit
model is given in Table 11.

The main assumption we make is that we assume an SFR,
IMF, and density laws that describe the spatial distribution of
stars in accordance with the Besançon model of Robin et al.
(2003), but with slight modifications as described in Sharma
et al. (2011). This model provides a good fit to the photometric

Table 11
Shu Model that Best Fits the RAVE Data (Same as Column (6) of Table 7)

Model RAVE SHU

U� 10.96+0.14
−0.13 km s−1

V� 7.53+0.16
−0.16 km s−1

W� 7.539+0.095
−0.09 km s−1

σ thin
R 39.67+0.63

−0.72 km s−1

σ thin
z 25.73+0.21

−0.21 km s−1

σ thick
R 42.43+0.95

−1 km s−1

σ thick
z 34.3+0.51

−0.57 km s−1

βR 0.195+0.011
−0.013

βz 0.37

1/Rthin
σ 0.073+0.0037

−0.003 kpc−1

1/Rthick
σ 0.1328+0.005

−0.0051kpc−1

Θ0 232.8+1.7
−1.6 km s−1

R0 8 kpc

αz 0.0471+0.0016
−0.0019

αR 0.0 kpc−1

Notes. Quoted uncertainties are purely random and do
not include systematics.

star counts of the Milky Way. Thus, the kinematic results that
we present are in some sense in the context of the model for the
spatial distribution of stars that we adopt. Moreover, kinematic
models offer greater freedom than physics really allows. To
overcome these concerns, one should fit both the kinematics
and the spatial distribution of stars together, and they should be
dynamically linked via the potential in which the stars move.

One could in principle constrain model parameters using the
two surveys, RAVE and GCS, simultaneously. However, the
two surveys probe different volumes, and it is not clear that a
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single value of a given parameter, for example, the solar motion
U�, is appropriate for both volumes: the immediate vicinity
of the Sun may be moving with respect to the wider disk, for
example. If such systematic differences exist, the simple models
we are fitting cannot provide an adequate account of the entire
body of data, and parameter values obtained from a joint fit will
be of doubtful physical significance. Hence, in this paper we
first analyzed the surveys separately and tried to understand the
systematics. Then, having understood the extent to which each
survey constrained each parameter, we fixed values of some
parameters from the results of one survey while analyzing the
other. We do this only for those parameters that we believe
should take the same values for both surveys.

The Gaussian model proves to be unsuitable for estimating
disk parameters such as Rthin

σ and V� because the fits prove
to be strongly degenerate. The Gaussian model gives different
values of Rthin

σ for RAVE and GCS. For RAVE it predicts
negative values, implying that σR increases outward. This result
is inconsistent with the disk’s scale height and value of σz/σR

being constant. Negative values of Rthin
σ also disagree with the

findings of Lewis & Freeman (1989). The Shu model has three
fewer parameters than the Gaussian model, and this helps it to
break the degeneracy between Rthin

σ and V�. It gives positive and
consistent values for Rthin

σ for both RAVE and GCS. The Shu
model also fits the RAVE data better than the Gaussian model,
especially with regard to stars’ values of vφ .

The RAVE data allow us to constrain the solar peculiar
motion and the local circular speed quite precisely. Our U�
and W� are in good agreement with the results of Schönrich
et al. (2010), but our V� is lower by 5 km s−1. The RAVE U�
and W� are within 2σ range of GCS values, but V� is lower by
2 km s−1. Using R0 = 8.0 kpc and assuming ∂vc/∂R = 0, we
get Θ0 ∼ 232 km s−1. Combining the estimates of Θ0 and V�,
we find the solar angular velocity with respect to the Galactic
center to be in good agreement with the measured proper motion
of Sgr A*. We find that if the fall of mean azimuthal velocity
with height z above the midplane is neglected, then this leads to
an underestimation of Θ0.

Although our random uncertainty regarding most parameters
is quite small, owing to a large number of stars in the RAVE
survey, significant sources of systematic uncertainty remain,
especially regarding Θ0 and V�. Our treatment of the vertical
dependence of the kinematics is not fully self-consistent. This
needs to be investigated with models that can handle the third
integral of motion, e.g., models based on action integrals. Also,
we need to explore dynamical models that are self-consistent
rather than pure kinematic models as studied here. The values
of Θ0 and V� are also sensitive to the priors on age and distance
distribution of stars. Hence, systematic errors of the order of the
uncertainty in the priors are also expected.

When using the Shu model, all parameters except V� and
thick-disk parameters show similar values for RAVE and GCS.
Since there are very few thick-disk stars in GCS, we deem
the RAVE thick-disk parameters to be more reliable. Also, the
uncertainty on Rthin

σ and Rthick
σ is substantially less for RAVE

than for GCS. The only parameter that is constrained better by
GCS than RAVE is βz, and this is partly due to the fact that
we only use radial velocities in RAVE. In an attempt to build a
concordance model, and to enable better comparison between
the two data sets, we fix βz in RAVE to GCS values and then fix
Rthin

σ and Rthick
σ in GCS to RAVE values. Doing so, we find that

RAVE results are within 3σ of GCS results. The most significant
difference between the two is the value of V�, which is lower for

RAVE by about 2 km s−1. The presence of prominent kinematic
substructures in GCS could be responsible for this discrepancy.
However, inaccuracy in our vertical treatment of kinematics
could also be responsible.

We find that the AVRs in general satisfy βR < βφ < βz, with
βφ closer to βR than βz, contrary to the finding of Aumer & Bin-
ney (2009). This result is consistent with the physical principle
that peculiar motions in the radial and azimuthal directions are
strongly coupled by epicyclic dynamics and largely decoupled
from vertical motions. The fitted β values depend on whether
the thick disk is added separately or is left to be represented by
the old tail of the thin disk, and they are naturally higher when
it is not added separately. The axial ratio σz/σR of the thin-disk
velocity ellipsoid for the 10 Gyr population is consistent with
those predicted by Sellwood (2008) for cloud scattering. Our
values of βR and βz agree well with age-velocity profiles mea-
sured by Minchev et al. (2013) for ages �7 Gyr in simulations
of disk galaxies. At ages larger than 7 Gyr, a model that consists
of power-law growth in the thin disk combined with a distinct
thick-disk population is too crude to represent the simulations
adequately. In the future it may be appropriate to use more
elaborate models inspired by simulations.

In the Shu model, the thick-disk velocity dispersions for
Rg = R0 are very similar to those of the old thin disk. However,
the radial scale length of the thick-disk velocity dispersions,
Rthick

σ , proved to be much smaller than that of the thin disk. Bovy
et al. (2012d) suggested a decrease of radial density scale length
with age. In this regard, the role of our adopted priors on age and
distance distribution of stars needs to be investigated further.

Given the essential role that age plays in disk dynamics, it
is unfortunate that the ages of stars are so hard to measure.
Fortunately, big advances in this area are expected soon.
Stellar astroseismology with missions like CoRoT and Kepler
makes it possible to measure ages more accurately than before
(Chaplin et al. 2010, 2011; Appourchaux et al. 2008), and
Gaia will dramatically improve age estimates by geometrically
determining distances to large numbers of stars. Meanwhile,
chemical abundances, especially of the alpha elements, provide
a fair proxy for age at a given metallicity. Hence, studying
the relationship of kinematic properties with abundance will be
crucial. Bovy et al. (2012d) argued that each mono-abundance
population has a distinct spatial distribution, and we expect
cohorts of coeval stars to have spatial distributions that are
characteristic of their ages.
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Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523
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