27 research outputs found

    Wave function mapping conditions in Open Quantum Dots structures

    Get PDF
    We discuss the minimal conditions for wave function spectroscopy, in which resonant tunneling is the measurement tool. Two systems are addressed: resonant tunneling diodes, as a toy model, and open quantum dots. The toy model is used to analyze the crucial tunning between the necessary resolution in current-voltage characteristics and the breakdown of the wave functions probing potentials into a level splitting characteristic of double quantum wells. The present results establish a parameter region where the wavefunction spectroscopy by resonant tunneling could be achieved. In the case of open quantum dots, a breakdown of the mapping condition is related to a change into a double quantum dot structure induced by the local probing potential. The analogy between the toy model and open quantum dots show that a precise control over shape and extention of the potential probes is irrelevant for wave function mapping. Moreover, the present system is a realization of a tunable Fano system in the wave function mapping regime.Comment: 6 pages, 6 figure

    Demonstration of a quantum nondemolition sum gate

    Get PDF
    The sum gate is the canonical two-mode gate for universal quantum computation based on continuous quantum variables. It represents the natural analogue to a qubit C-NOT gate. In addition, the continuous-variable gate describes a quantum nondemolition (QND) interaction between the quadrature components of two light fields. We experimentally demonstrate a QND sum gate, employing the scheme by R. Filip, P. Marek, and U.L. Andersen [\pra {\bf 71}, 042308 (2005)], solely based on offline squeezed states, homodyne measurements, and feedforward. The results are verified by simultaneously satisfying the criteria for QND measurements in both conjugate quadratures.Comment: 4 pages, 4 figure

    Momentum-Resolved Tunneling into Fractional Quantum Hall Edges

    Full text link
    Tunneling from a two-dimensional contact into quantum-Hall edges is considered theoretically for a case where the barrier is extended, uniform, and parallel to the edge. In contrast to previously realized tunneling geometries, details of the microscopic edge structure are exhibited directly in the voltage and magnetic-field dependence of the differential tunneling conductance. In particular, it is possible to measure the dispersion of the edge-magnetoplasmon mode, and the existence of additional, sometimes counterpropagating, edge-excitation branches could be detected.Comment: 4 pages, 3 figures, RevTex

    Fock-Darwin-like quantum dot states formed by charged Mn interstitial ions

    Get PDF
    We report a method of creating electrostatically induced quantum dots by thermal diffusion of interstitial Mn ions out of a p-type (GaMn)As layer into the vicinity of a GaAs quantum well. This approach creates deep, approximately circular, and strongly confined dotlike potential minima in a large (200  μm) mesa diode structure without need for advanced lithography or electrostatic gating. Magnetotunneling spectroscopy of an individual dot reveals the symmetry of its electronic eigenfunctions and a rich energy level spectrum of Fock-Darwin-like states with an orbital angular momentum component |lz| from 0 to 11

    Tunnel spectroscopy of localised electronic states in hexagonal boron nitride

    Get PDF
    Hexagonal boron nitride is a large band gap layered crystal, frequently incorporated in van der Waals heterostructures as an insulating or tunnel barrier. Localised states with energies within its band gap can emit visible light, relevant to applications in nanophotonics and quantum information processing. However, they also give rise to conducting channels, which can induce electrical breakdown when a large voltage is applied. Here we use gated tunnel transistors to study resonant electron tunnelling through the localised states in few atomic-layer boron nitride barriers sandwiched between two monolayer graphene electrodes. The measurements are used to determine the energy, linewidth, tunnelling transmission probability, and depth within the barrier of more than 50 distinct localised states. A three-step process of electron percolation through two spatially separated localised states is also investigated
    corecore