27 research outputs found
Wave function mapping conditions in Open Quantum Dots structures
We discuss the minimal conditions for wave function spectroscopy, in which
resonant tunneling is the measurement tool. Two systems are addressed: resonant
tunneling diodes, as a toy model, and open quantum dots. The toy model is used
to analyze the crucial tunning between the necessary resolution in
current-voltage characteristics and the breakdown of the wave functions probing
potentials into a level splitting characteristic of double quantum wells. The
present results establish a parameter region where the wavefunction
spectroscopy by resonant tunneling could be achieved. In the case of open
quantum dots, a breakdown of the mapping condition is related to a change into
a double quantum dot structure induced by the local probing potential. The
analogy between the toy model and open quantum dots show that a precise control
over shape and extention of the potential probes is irrelevant for wave
function mapping. Moreover, the present system is a realization of a tunable
Fano system in the wave function mapping regime.Comment: 6 pages, 6 figure
Demonstration of a quantum nondemolition sum gate
The sum gate is the canonical two-mode gate for universal quantum computation
based on continuous quantum variables. It represents the natural analogue to a
qubit C-NOT gate. In addition, the continuous-variable gate describes a quantum
nondemolition (QND) interaction between the quadrature components of two light
fields. We experimentally demonstrate a QND sum gate, employing the scheme by
R. Filip, P. Marek, and U.L. Andersen [\pra {\bf 71}, 042308 (2005)], solely
based on offline squeezed states, homodyne measurements, and feedforward. The
results are verified by simultaneously satisfying the criteria for QND
measurements in both conjugate quadratures.Comment: 4 pages, 4 figure
Momentum-Resolved Tunneling into Fractional Quantum Hall Edges
Tunneling from a two-dimensional contact into quantum-Hall edges is
considered theoretically for a case where the barrier is extended, uniform, and
parallel to the edge. In contrast to previously realized tunneling geometries,
details of the microscopic edge structure are exhibited directly in the voltage
and magnetic-field dependence of the differential tunneling conductance. In
particular, it is possible to measure the dispersion of the edge-magnetoplasmon
mode, and the existence of additional, sometimes counterpropagating,
edge-excitation branches could be detected.Comment: 4 pages, 3 figures, RevTex
Fock-Darwin-like quantum dot states formed by charged Mn interstitial ions
We report a method of creating electrostatically induced quantum dots by thermal diffusion of interstitial Mn ions out of a p-type (GaMn)As layer into the vicinity of a GaAs quantum well. This approach creates deep, approximately circular, and strongly confined dotlike potential minima in a large (200 μm) mesa diode structure without need for advanced lithography or electrostatic gating. Magnetotunneling spectroscopy of an individual dot reveals the symmetry of its electronic eigenfunctions and a rich energy level spectrum of Fock-Darwin-like states with an orbital angular momentum component |lz| from 0 to 11
Tunnel spectroscopy of localised electronic states in hexagonal boron nitride
Hexagonal boron nitride is a large band gap layered crystal, frequently incorporated in van der Waals heterostructures as an insulating or tunnel barrier. Localised states with energies within its band gap can emit visible light, relevant to applications in nanophotonics and quantum information processing. However, they also give rise to conducting channels, which can induce electrical breakdown when a large voltage is applied. Here we use gated tunnel transistors to study resonant electron tunnelling through the localised states in few atomic-layer boron nitride barriers sandwiched between two monolayer graphene electrodes. The measurements are used to determine the energy, linewidth, tunnelling transmission probability, and depth within the barrier of more than 50 distinct localised states. A three-step process of electron percolation through two spatially separated localised states is also investigated
Properties and applications of quantum dot heterostructures grown by molecular beam epitaxy
Anti-crossing of Landau levels of different two-dimensional subbands in GaAs in normal magnetic field
Anti-crossing of Landau levels of different two-dimensional subbands in GaAs in normal magnetic field
Item does not contain fulltex
