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The sum gate is the canonical two-mode gate for universal quantum computation based on continuous

quantum variables. It represents the natural analogue to a qubit C-NOT gate. In addition, the continuous-

variable gate describes a quantum nondemolition (QND) interaction between the quadrature components

of two light modes. We experimentally demonstrate a QND sum gate, employing the scheme by R. Filip,

P. Marek, and U. L. Andersen [Phys. Rev. A 71, 042308 (2005)], solely based on off-line squeezed states,

homodyne measurements, and feedforward. The results are verified by simultaneously satisfying the

criteria for QND measurements in both conjugate quadratures.

DOI: 10.1103/PhysRevLett.101.250501 PACS numbers: 03.67.Lx, 03.67.Bg, 42.50.Dv, 42.50.Ex

The analogue of a two-qubit C-NOT gate, when continu-
ous quantum variables are considered, is the so-called sum
gate. It represents the canonical version of a two-mode
entangling gate for universal quantum computation in the
regime of continuous variables [1]. When applied to two
optical, bosonic modes, as opposed to a simple beam
splitter transformation, the sum gate is even capable of
entangling two modes each initially in a coherent state, i.e.,
a close-to-classical state.

Apart from representing a universal two-mode gate, the
sum gate also describes a quantum nondemolition (QND)
interaction. The concept of a QND measurement has been
known for almost 30 years. Initially, it was proposed to
allow for better accuracies in the detection of gravitational
waves [2]. A QND measurement is a projection measure-
ment onto the basis of a QND observable which is basically
a constant of motion. The QND measurement should pre-
serve the measured observable, but still gain sufficient
information about its value; the backaction is confined to
the conjugate observable.

Various demonstrations of QND or backaction evading
measurements have been reported [3]. The interest in the
realization of a full QND gate grew only recently, mainly
in the context of continuous-variable (CV) quantum infor-
mation processing [4]. In particular, the QND sum gate is
(up to local phase rotations) the canonical entangling gate
for building up Gaussian cluster states [5], a sufficient
resource for universal quantum computation [6]. Other
applications of the sum gate are CV quantum error correc-
tion [7] and CV coherent communication [8].

Here we report on the experimental demonstration of a
full QND sum gate. The gate leads to quantum correlations
in both conjugate variables, consistent with an entangled
state, and allowing for a QND measurement of either

variable with signal and probe interchanged. While pre-
vious works focused on fulfilling the criteria for a QND
measurement [9] of one fixed variable, here we satisfy the
QND criteria for two noncommuting observables, verify-
ing entanglement at the same time. As our implementation
is very efficient and controllable, the current scheme can be
used to process arbitrary optical quantum states, including
fragile non-Gaussian states. Similar to the measurement-
based implementation of single-mode squeezing gates
[10,11], realization of the QND gate only requires two
off-line squeezed ancilla modes [10,12].

Let us write the QND-gate Hamiltonian as ĤQND ¼
x̂1p̂2, with a suitable choice of the absolute phase for
each mode. Here x̂=2 and p̂=2 are the real and imaginary
parts of each mode’s annihilation operator, â ¼
ðx̂þ ip̂Þ=2, and the subscripts ‘‘1’’ and ‘‘2’’ denote two
independent modes. The ideal QND input-output relations
then become,

x̂ out
1 ¼ x̂in1 ; x̂out2 ¼ x̂in2 þGx̂in1 ;

p̂out
1 ¼ p̂in

1 �Gp̂in
2 ; p̂out

2 ¼ p̂in
2 ;

(1)

where G is the gain of the interaction.
Through this ideal QND interaction, the ‘‘signal’’ QND

variable x̂1 (p̂2) is preserved in the output state and its
value is added to the ‘‘probe’’ variable x̂2 (p̂1). This allows
for a QND measurement of either x̂1 or p̂2, with a back-
action confined to the conjugate variable. The usual criteria
for QND measurements (in the linearized, Gaussian re-
gime) are [9],

1< TS þ TP � 2; VSjP < 1; (2)

where TS and TP are the transfer coefficients from signal
input to signal output (‘‘signal preservation’’) and from
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signal input to probe output (‘‘information gain’’), respec-
tively; VSjP is the conditional variance of the signal output

when the probe output is measured (‘‘quantum state
preparation’’).

The implementation of the QND gate based on off-line
resources is shown in Fig. 1. The interaction gain G in
Eq. (1) is related to the reflectivities of the four beam split-

ters via one free parameter R, with G ¼ ð1= ffiffiffiffi

R
p Þ � ffiffiffiffi

R
p

,
taking arbitrary values for 0<R � 1. The full scheme is
described by the input-output relations [10],

x̂ out
1 ¼ x̂in1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R

1þ R

s

x̂ð0ÞA e�rA ; (3)

x̂ out
2 ¼ x̂in2 þ 1� R

ffiffiffiffi

R
p x̂in1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
1� R

1þ R

s

x̂ð0ÞA e�rA ; (4)

p̂ out
1 ¼ p̂in

1 � 1� R
ffiffiffiffi

R
p p̂in

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
1� R

1þ R

s

p̂ð0Þ
B e�rB ; (5)

p̂ out
2 ¼ p̂in

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R

1þ R

s

p̂ð0Þ
B e�rB ; (6)

where x̂ð0ÞA e�rA and p̂ð0Þ
B e�rB are the squeezed quadratures

of the ancillas (the subscripts ‘A’ and ‘B’ denote two
independent ancilla modes), leading to some excess noise
for finite squeezing. The gate operation becomes ideal in
the limit of infinite squeezing (rA, rB ! 1). Note that here
precise control of active squeezing arising from an unstable
process of parametric down conversion is not needed;
instead, the gate is completely controlled via passive opti-
cal devices. For sufficiently large squeezing of the ancilla
modes, this transformation also allows for QND measure-
ments. Using variable beam splitters, we experimentally
realized two interaction gains, G ¼ 1:0 and 1.5. In particu-
lar, the unit gain interaction is significant for quantum

information processing. Nonetheless, we observe a better
performance in the QND measurements using higher gain.
We note that a nonunitary and single quadrature QND
measurement based on squeezed vacuum and feedforward
has been demonstrated in Ref. [13].
Experimental setup.—A schematic of the experimental

setup is illustrated in Fig. 1. It basically consists of a Mach-
Zehnder interferometer with a single-mode squeezing gate
in each arm. To implement fine-tunable and lossless
squeezing operations, we use the measurement-induced
squeezing approach proposed in Ref. [10], experimentally
implemented in Ref. [11] and illustrated inside the dashed
boxes of Fig. 1.
We treat the quantum information encoded at frequency

sidebands of 1.25 MHz relative to the optical carrier of the
bright continuous wave light beam at a wavelength of
860 nm from a Ti:sapphire laser. The powers in each of
the two input modes and the squeezed modes are 10 �W
and 2 �W, respectively. These powers are considerably
smaller than the powers (3 mW) of the local oscillators
(LOs) used for homodyne detection. All the interferences
at the beam splitters are actively phase locked using modu-
lation sidebands of 77 kHz, 106 kHz, and their beat in
29 kHz. Subthreshold optical parametric oscillators
(OPOs) generate the squeezed vacuum ancillas. To control
the beam splitting ratios of the four beam splitters in the
squeezing operations and the Mach-Zehnder interferome-
ter, they are composed of two polarizing beam splitters and
a half wave plate [11].
The OPOs are bow-tie shaped cavities of 500 mm in

length, containing a periodically-poledKTiOPO4 (PPKTP)
crystal of 10 mm in length. The pump beams for the OPOs
(with wavelengths of 430 nm and powers of about
100 mW) are the second harmonic of the output of the
Ti:sapphire laser. The frequency doubling cavity (not
shown in the figure) has the same configuration as the
OPOs, but contains a KNbO3 crystal. For details of a
squeezed vacuum generation; see Ref. [14]. Each OPO
enables a squeezing degree of about �5 dB relative to
the shot noise limit.
The outcomes of the homodyne detection in the QND

gate are fed forward to the remaining part. After low noise
electric amplification, they drive an electro-optical modu-
lator (EOM) traversed by an auxiliary beam with the power
of 150 �W, which is subsequently mixed with the signal
beam by an asymmetric beam splitter (99:1).
The QND scheme is characterized by measuring the two

input modes as well as the two output modes using homo-
dyne detection. The detector’s quantum efficiencies are
higher than 99%, the interference visibilities to the LOs
are on average 98%, and the dark noise of each homodyne
detector is about 17 dB below the optical shot noise level
produced by the local oscillator. We measure the propaga-
tion losses in each of the two main modes through the QND
apparatus to be about 7%.
Experimental results.—The three measures in Eq. (2) are

used to quantify the performance of our QND system. To

OPO

OPO

1/(1+R)R/(1+R)

LO

LO

99:1

99:1

Squeezer B

Squeezer A

EOM

EOM

R

R

LO

LO

IN 1

IN 2

OUT 2

OUT 1

Verification
QND gate

FIG. 1 (color online). Schematic of the experimental setup.
The parameter R determines the reflectivities of the four beam
splitters, which are R=ð1þ RÞ, R, R, and 1=ð1þ RÞ. We employ
optical parametric oscillators (OPO) to produce squeezed vac-
uum modes, local oscillators (LO) for homodyne detection, and
electro-optic modulators (EOM) combined with beam splitters
(99:1) for signal displacement.
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estimate them, we perform measurements of second mo-
ments of the input fields and the output fields, employing a
spectrum analyzer with a center frequency of 1.25 MHz,
resolution and video bandwidths of 30 kHz and 300 Hz,
respectively, a sweep time set to 0.1 s and further averaging
of 20 traces. In Figs. 2–4 the results forG ¼ 1:0 are shown;
in Table I the performance of the QND device is listed for
both G ¼ 1:0 and G ¼ 1:5.

In the first series of measurements we determine the
variances of conjugate quadratures of the output states
when the input states are pure vacua. The results corre-
sponding to G ¼ 1:0 are presented in Fig. 2. The variances
of the two input states are at the vacuum noise level as
illustrated by the blue traces. As a result of the QND
interaction, in the ideal case, the noise of the signal vari-
ables (x̂1 and p̂2) is added to the probe variables (x̂2 and
p̂1), while the signal variables are preserved. The expected
variances for the ideal performance are marked by the
yellow lines and the actual measured variances of the out-
put state are given by the red traces. The deviation from the
ideal performance is due to the finite amount of squeezing
for the ancillas. For comparison, we also measure the
variances of the output states when no squeezing is used.
This is shown by the green traces. The expected variances,

for finite squeezing or without squeezing, are calculated
and marked by pink and light green lines, respectively.
In the second series of measurements, in order to test the

universality of the QND gate, we replace the input vacuum
states by a pair of coherent states. We generate the coherent
amplitude in each quadrature of the two input modes by
modulating the amplitude or phase of their carriers using
an EOM operating at 1.25 MHz. We investigate four differ-
ent input states, each corresponding to a coherent excita-
tion in, respectively, (a) xin1 , (b) x

in
2 , (c) p

in
1 , and (d) p

in
2 . The

measurement results of the second moments of the input
and output quadratures for G ¼ 1:0 are shown in Fig. 3.
The excitations of the input states are measured by setting
the reflectivities of the four beam splitters to unity and
blocking the auxiliary displacement beams in the feedfor-
ward construction. These measurements are illustrated by
the blue traces (the nonexcited quadratures are not shown
because they are at the vacuum level, 0 dB). Traces in red
are the second moments of the output quadratures. We
observe that the amplitude of the input states is preserved
in the same quadrature with almost unity gain. Further-
more, we clearly see the expected feature that the infor-
mation in a signal variable, x̂in1 or p̂in

2 , is coupled into the
probe variable x̂out2 or p̂out

1 [see Figs. 3(a) and 3(d)], whereas
the amplitude in the probe variables x̂in2 and p̂in

1 does
not couple to any of the other quadratures [see Figs. 3(b)
and 3(c)]. These results verify the interaction in Eq. (1).
From these measurements we determine the transfer coef-
ficients TS and TP using the method outlined in ref. [15].
The results are summarized in Table I. Note that the
experimentally determined values of TS and TP are de-
graded by propagation and detection losses, compared to
the ideal scheme described by Eqs. (3)–(6).
Finally, we measure the conditional variance using the

setup shown in Fig. 4(a). The outcomes from one of the
homodyne detectors are rescaled by a gain g, subtracted
from (or added to) the outcomes of the other homodyne
detector and subsequently directed to a spectrum analyzer.
The resulting normalized noise powers are shown in
Figs. 4(b) and 4(c) as a function of the rescaling gain g.
The minima of these plots correspond to the conditional
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FIG. 3 (color). Second moments of the quadrature components of the input and output states with respect to four different input
states, for G ¼ 1:0. The excited input quadratures are shown in blue (nonexcited input quadratures with variances equal to the shot
noise level are not shown). The output quadratures are shown in red, and, for comparison, we add the traces in green which are the
output quadratures without coherent excitation.
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FIG. 2 (color). Variances of the quadrature components corre-
sponding to vacuum inputs and G ¼ 1:0. Shown are the experi-
mental QND output variances (red) with their theoretical values
(pink), compared to the results with vacuum-state ancillas
(green) and their theoretical values (light green). The yellow
lines refer to the theoretical results for infinite squeezing, and the
blue traces show the shot noise level corresponding to the
variances of the input states.
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variances for the various realizations: curves (i) represent
ideal performance, curves (ii) are associated with our
system with finitely squeezed ancillas, and curves (iii)
are the performance of the system without squeezing of
ancilla states. The parabolic curves are theoretical calcu-
lations, and the dots with vertical error bars along the
curves (ii) and (iii) are the experimental results. The ex-
perimental results for VSjP are shown in Table I. No com-

pensation of losses is carried out for these results.
Our experiment demonstrates the canonical two-mode

entangling gate. From the noise correlations in Fig. 4, we
verify entanglement between the two output modes.
According to Duan and Simon [16,17], a sufficient condi-
tion for an entangled state is,

hðx̂out1 � gx̂out2 Þ2i þ hðp̂out
2 þ gp̂out

1 Þ2i< 4jgj; (7)

where g is the rescaling gain. Thus, if the parabolic curves
in Fig. 4(b) and 4(c) go below the lines (iv) simultaneously
for both quadratures, the two output modes are entangled,
which is the case for curves (ii) with squeezed ancillas
[18]. Note that the two-mode gate here has been applied to
two coherent input states which, without the squeezed
ancillas, would not become entangled via any linear optical
transformation alone [see, e.g., curve (iii)].
In conclusion, we have demonstrated and fully charac-

terized a close-to-unitary quantum nondemolition sum gate
using only linear optics and off-line squeezed vacuum
states. The performance of the sum gate was quantified
by applying the usual QND criteria to each conjugate
quadrature; we found that the gate operates in the quantum
regime, entangling even two input coherent states. The
future prospects of this demonstration are intriguing since
the sum gate is an integral part of, e.g., a one-way quantum
computer based on continuous variables [6] and quantum
error correction protocols [7].
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TABLE I. Evaluation of the QND interaction. Shown are the
quadrature transfer coefficients TS and TP and the conditional
variance VSjP for two different gains G.

G 1.0 1.5

Quadrature x p x p

TS 0:79� 0:03 0:71� 0:03 0:80� 0:03 0:71� 0:03

TP 0:41� 0:02 0:39� 0:02 0:62� 0:03 0:56� 0:02

TS þ TP 1:20� 0:05 1:10� 0:05 1:42� 0:06 1:27� 0:05

VSjP 0:75� 0:01 0:78� 0:01 0:61� 0:01 0:63� 0:01

(a) Setup of verification part.
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FIG. 4 (color online). Noise correlations between output quad-
ratures, determining the conditional variances and verifying en-
tanglement. (a) Experimental setup. The measured probe quad-
rature is rescaled with a variable gain g, added (subtracted) (�)
to (from) the signal quadrature detector output, and analyzed
with an electronic spectrum analyzer. Variances of x̂out1 � gx̂out2

and of p̂out
2 þ gp̂out

1 are shown in (b) and (c), respectively: theo-

retical prediction for an ideal QND interaction (i), a QND inter-
action with finite degrees of squeezing of the ancilla modes (ii),
and with vacuum ancilla modes (iii). By entering the areas below
the lines (iv) entanglement is verified. The vertical axes are vari-
ances normalized to the shot noise power of the signal variable.
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