377 research outputs found
Leptogenesis with Majorana neutrinos
I review the origin of the lepton asymmetry which is converted to a baryon
excess at the electroweak scale. This scenario becomes more attractive if we
can relate it to other physical phenomena. For this reason I elaborate on the
conditions of the early universe which lead to a sizable lepton asymmetry. Then
I describe methods and models which relate the low energy parameters of
neutrinos to the high energy (cosmological) CP-violation and to neutrinoless
double beta-decay.Comment: Contributed to 1st Workshop on Neutrino - Nucleus Interactions in the
Few GeV Region (NuInt01), Tsukuba, Japan, 13-16 Dec 2001. 6 pages, 6 figure
Verifying proofs in constant depth
In this paper we initiate the study of proof systems where verification of proofs proceeds by NC circuits. We investigate the question which languages admit proof systems in this very restricted model. Formulated alternatively, we ask which languages can be enumerated by NC functions. Our results show that the answer to this problem is not determined by the complexity of the language. On the one hand, we construct NC proof systems for a variety of languages ranging from regular to NP-complete. On the other hand, we show by combinatorial methods that even easy regular languages such as Exact-OR do not admit NC proof systems. We also present a general construction of proof systems for regular languages with strongly connected NFA's
Representation of climate extreme indices in the ACCESS1.3b coupled atmosphere–land surface model
Climate extremes, such as heat waves and heavy precipitation events, have large impacts on ecosystems and societies. Climate models provide useful tools for studying underlying processes and amplifying effects associated with extremes. The Australian Community Climate and Earth System Simulator (ACCESS) has recently been coupled to the Community Atmosphere Biosphere Land Exchange (CABLE) model. We examine how this model represents climate extremes derived by the Expert Team on Climate Change Detection and Indices (ETCCDI) and compare them to observational data sets using the AMIP framework. We find that the patterns of extreme indices are generally well represented. Indices based on percentiles are particularly well represented and capture the trends over the last 60 years shown by the observations remarkably well. The diurnal temperature range is underestimated, minimum temperatures (TMIN) during nights are generally too warm and daily maximum temperatures (TMAX) too low in the model. The number of consecutive wet days is overestimated, while consecutive dry days are underestimated. The maximum consecutive 1-day precipitation amount is underestimated on the global scale. Biases in TMIN correlate well with biases in incoming longwave radiation, suggesting a relationship with biases in cloud cover. Biases in TMAX depend on biases in net shortwave radiation as well as evapotranspiration. The regions and season where the bias in evapotranspiration plays a role for the TMAX bias correspond to regions and seasons where soil moisture availability is limited. Our analysis provides the foundation for future experiments that will examine how land-surface processes contribute to these systematic biases in the ACCESS modelling system
Surface Effects in Magnetic Microtraps
We have investigated Bose-Einstein condensates and ultra cold atoms in the
vicinity of a surface of a magnetic microtrap. The atoms are prepared along
copper conductors at distances to the surface between 300 um and 20 um. In this
range, the lifetime decreases from 20 s to 0.7 s showing a linear dependence on
the distance to the surface. The atoms manifest a weak thermal coupling to the
surface, with measured heating rates remaining below 500 nK/s. In addition, we
observe a periodic fragmentation of the condensate and thermal clouds when the
surface is approached.Comment: 4 pages, 4 figures; v2: corrected references; v3: final versio
Fermi Surfaces of Diborides: MgB2 and ZrB2
We provide a comparison of accurate full potential band calculations of the
Fermi surfaces areas and masses of MgB2 and ZrB2 with the de Haas-van Alphen
date of Yelland et al. and Tanaka et al., respectively. The discrepancies in
areas in MgB2 can be removed by a shift of sigma-bands downward with respect to
pi-bands by 0.24 eV. Comparison of effective masses lead to orbit averaged
electron-phonon coupling constants lambda(sigma)=1.3 (both orbits),
lambda(pi)=0.5. The required band shifts, which we interpret as an exchange
attraction for sigma states beyond local density band theory, reduces the
number of holes from 0.15 to 0.11 holes per cell. This makes the occurrence of
superconductivity in MgB2 a somewhat closer call than previously recognized,
and increases the likelihood that additional holes can lead to an increased Tc.Comment: 7 pages including 4 figure
Comparative Study of Multifragmentation of Gold Nuclei Induced by Relativistic Protons, He, and C
Multiple emission of intermediate-mass fragments has been studied for the
collisions of p, He and C on Au with the setup FASA. The mean
IMF multiplicities (for the events with at least one IMF) are saturating at the
value of for the incident energies above 6 GeV. The observed IMF
multiplicities cannot be described in a two-stage scenario, a fast cascade
followed by a statistical multifragmentation. Agreement with the measured IMF
multiplicities is obtained by introducing an intermediate phase and modifying
empirically the excitation energies and masses of the remnants.
The angular distributions and energy spectra from the p-induced collisions
are in agreement with the scenario of ``thermal'' multifragmentation of a hot
and diluted target spectator. In the case of C+Au(22.4 GeV) and
He(14.6 GeV)+Au collisions, deviations from a pure thermal break-up are
seen in the energy spectra of the emitted fragments, which are harder than
those both from model calculations and from the measured ones for p-induced
collisions. This difference is attributed to a collective flow.Comment: 33 pages 15 figures, accepted in Nucl. Phys.
Invisible Z-Boson Decays at e+e- Colliders
The measurement of the invisible Z-boson decay width at e+e- colliders can be
done "indirectly", by subtracting the Z-boson visible partial widths from the
Z-boson total width, or "directly", from the process e+e- -> \gamma \nu
\bar{\nu}. Both procedures are sensitive to different types of new physics and
provide information about the couplings of the neutrinos to the Z-boson. At
present, measurements at LEP and CHARM II are capable of constraining the
left-handed Z\nu\nu-coupling, 0.45 <~ g_L <~ 0.5, while the right-handed one is
only mildly bounded, |g_R| <= 0.2. We show that measurements at a future e+e-
linear collider at different center-of-mass energies, \sqrt{s} = MZ and
\sqrt{s}s ~ 170 GeV, would translate into a markedly more precise measurement
of the Z\nu\nu-couplings. A statistically significant deviation from Standard
Model predictions will point toward different new physics mechanisms, depending
on whether the discrepancy appears in the direct or the indirect measurement of
the invisible Z-width. We discuss some scenarios which illustrate the ability
of different invisible Z-boson decay measurements to constrain new physics
beyond the Standard Model
Programming Groups of Rational Agents
Abstract. In this paper, we consider the problem of effectively pro-gramming groups of agents. These groups should capture structuring mechanisms common in multi-agent systems, such as teams, cooperative groups, and organisations. Not only should individual agents be dynamic and evolving, but the groups in which the agents occur must be open, flexible and capable of similar evolution and restructuring. We enable the description and implementation of such groups by providing an extension to our previous work on programming languages for agent-based systems based on executable temporal and modal logics. With such formalism as a basis, we consider the grouping aspects within multi-agent systems. In particular, we describe how this logic-based approach to grouping has been implemented in Java and consider how this language can be used for developing multi-agent systems.
Neutrinoless Double Beta Decay from Singlet Neutrinos in Extra Dimensions
We study the model-building conditions under which a sizeable
-decay signal to the recently reported level of~0.4 eV is due
to Kaluza--Klein singlet neutrinos in theories with large extra dimensions. Our
analysis is based on 5-dimensional singlet-neutrino models compactified on an
orbifold, where the Standard--Model fields are localized on a
3-brane. We show that a successful interpretation of a positive signal within
the above minimal 5-dimensional framework would require a non-vanishing shift
of the 3-brane from the orbifold fixed points by an amount smaller than the
typical scale (100 MeV) characterizing the Fermi nuclear momentum. The
resulting 5-dimensional models predict a sizeable effective Majorana-neutrino
mass that could be several orders of magnitude larger than the light neutrino
masses. Most interestingly, the brane-shifted models with only one bulk sterile
neutrino also predict novel trigonometric textures leading to mass scenarios
with hierarchical active neutrinos and large - and
- mixings that can fully explain the current atmospheric and
solar neutrino data.Comment: 33 pages, LaTeX, minor rewordings, references adde
- …