213 research outputs found

    Partisan impacts on the economy: evidence from prediction markets and close elections

    Get PDF
    Analyses of the effects of election outcomes on the economy have been hampered by the problem that economic outcomes also influence elections. We sidestep these problems by analyzing movements in economic indicators caused by clearly exogenous changes in expectations about the likely winner during election day. Analyzing high frequency financial fluctuations following the release of flawed exit poll data on election day 2004, and then during the vote count we find that markets anticipated higher equity prices, interest rates and oil prices, and a stronger dollar under a George W. Bush presidency than under John Kerry. A similar Republican–Democrat differential was also observed for the 2000 Bush–Gore contest. Prediction market based analyses of all presidential elections since 1880 also reveal a similar pattern of partisan impacts, suggesting that electing a Republican president raises equity valuations by 2–3 percent, and that since Ronald Reagan, Republican presidents have tended to raise bond yields

    The Promise of Prediction Markets

    Get PDF
    Prediction markets are markets for contracts that yield payments based on the outcome of an uncertain future event, such as a presidential election. Using these markets as forecasting tools could substantially improve decision making in the private and public sectors. We argue that U.S. regulators should lower barriers to the creation and design of prediction markets by creating a safe harbor for certain types of small stakes markets. We believe our proposed change has the potential to stimulate innovation in the design and use of prediction markets throughout the economy, and in the process to provide information that will benefit the private sector and government alike.Technology and Industry

    Structural basis for mutation-induced destabilization of profilin 1 in ALS

    Get PDF
    Mutations in profilin 1 (PFN1) are associated with amyotrophic lateral sclerosis (ALS); however, the pathological mechanism of PFN1 in this fatal disease is unknown. We demonstrate that ALS-linked mutations severely destabilize the native conformation of PFN1 in vitro and cause accelerated turnover of the PFN1 protein in cells. This mutation-induced destabilization can account for the high propensity of ALS-linked variants to aggregate and also provides rationale for their reported loss-of-function phenotypes in cell-based assays. The source of this destabilization is illuminated by the X-ray crystal structures of several PFN1 proteins, revealing an expanded cavity near the protein core of the destabilized M114T variant. In contrast, the E117G mutation only modestly perturbs the structure and stability of PFN1, an observation that reconciles the occurrence of this mutation in the control population. These findings suggest that a destabilized form of PFN1 underlies PFN1-mediated ALS pathogenesis

    Corruption in Developing Countries

    Get PDF
    Recent years have seen a remarkable expansion in economists' ability to measure corruption. This in turn has led to a new generation of well-identified, microeconomic studies. We review the evidence on corruption in developing countries in light of these recent advances, focusing on three questions: how much corruption is there, what are the efficiency consequences of corruption, and what determines the level of corruption? We find robust evidence that corruption responds to standard economic incentive theory but also that the effects of anticorruption policies often attenuate as officials find alternate strategies to pursue rents.Hewlett-Packard CompanyGreat Britain. Dept. for International DevelopmentMassachusetts Institute of Technology. Abdul Latif Jameel Poverty Action Lab (Governance Initiative

    Metal-Free ALS Variants of Dimeric Human Cu,Zn-Superoxide Dismutase Have Enhanced Populations of Monomeric Species

    Get PDF
    Amino acid replacements at dozens of positions in the dimeric protein human, Cu,Zn superoxide dismutase (SOD1) can cause amyotrophic lateral sclerosis (ALS). Although it has long been hypothesized that these mutations might enhance the populations of marginally-stable aggregation-prone species responsible for cellular toxicity, there has been little quantitative evidence to support this notion. Perturbations of the folding free energy landscapes of metal-free versions of five ALS-inducing variants, A4V, L38V, G93A, L106V and S134N SOD1, were determined with a global analysis of kinetic and thermodynamic folding data for dimeric and stable monomeric versions of these variants. Utilizing this global analysis approach, the perturbations on the global stability in response to mutation can be partitioned between the monomer folding and association steps, and the effects of mutation on the populations of the folded and unfolded monomeric states can be determined. The 2- to 10-fold increase in the population of the folded monomeric state for A4V, L38V and L106V and the 80- to 480-fold increase in the population of the unfolded monomeric states for all but S134N would dramatically increase their propensity for aggregation through high-order nucleation reactions. The wild-type-like populations of these states for the metal-binding region S134N variant suggest that even wild-type SOD1 may also be prone to aggregation in the absence of metals

    Development of a Model System to Identify Differences in Spring and Winter Oat

    Get PDF
    Our long-term goal is to develop a Swedish winter oat (Avena sativa). To identify molecular differences that correlate with winter hardiness, a winter oat model comprising of both non-hardy spring lines and winter hardy lines is needed. To achieve this, we selected 294 oat breeding lines, originating from various Russian, German, and American winter oat breeding programs and tested them in the field in south- and western Sweden. By assaying for winter survival and agricultural properties during four consecutive seasons, we identified 14 breeding lines of different origins that not only survived the winter but also were agronomically better than the rest. Laboratory tests including electrolytic leakage, controlled crown freezing assay, expression analysis of the AsVrn1 gene and monitoring of flowering time suggested that the American lines had the highest freezing tolerance, although the German lines performed better in the field. Finally, six lines constituting the two most freezing tolerant lines, two intermediate lines and two spring cultivars were chosen to build a winter oat model system. Metabolic profiling of non-acclimated and cold acclimated leaf tissue samples isolated from the six selected lines revealed differential expression patterns of 245 metabolites including several sugars, amino acids, organic acids and 181 hitherto unknown metabolites. The expression patterns of 107 metabolites showed significant interactions with either a cultivar or a time-point. Further identification, characterisation and validation of these metabolites will lead to an increased understanding of the cold acclimation process in oats. Furthermore, by using the winter oat model system, differential sequencing of crown mRNA populations would lead to identification of various biomarkers to facilitate winter oat breeding

    Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Linkage maps are an integral resource for dissection of complex genetic traits in plant and animal species. Canonical map construction follows a well-established workflow: an initial discovery phase where genetic markers are mined from a small pool of individuals, followed by genotyping of selected mapping populations using sets of marker panels. A newly developed sequence-based marker technology, Restriction site Associated DNA (RAD), enables synchronous single nucleotide polymorphism (SNP) marker discovery and genotyping using massively parallel sequencing. The objective of this research was to assess the utility of RAD markers for linkage map construction, employing barley as a model system. Using the published high density EST-based SNP map in the Oregon Wolfe Barley (OWB) mapping population as a reference, we created a RAD map using a limited set of prior markers to establish linakge group identity, integrated the RAD and prior data, and used both maps for detection of quantitative trait loci (QTL).</p> <p>Results</p> <p>Using the RAD protocol in tandem with the Illumina sequence by synthesis platform, a total of 530 SNP markers were identified from initial scans of the OWB parental inbred lines - the "dominant" and "recessive" marker stocks - and scored in a 93 member doubled haploid (DH) mapping population. RAD sequence data from the structured population was converted into allele genotypes from which a genetic map was constructed. The assembled RAD-only map consists of 445 markers with an average interval length of 5 cM, while an integrated map includes 463 RAD loci and 2383 prior markers. Sequenced RAD markers are distributed across all seven chromosomes, with polymorphic loci emanating from both coding and noncoding regions in the <it>Hordeum </it>genome. Total map lengths are comparable and the order of common markers is identical in both maps. The same large-effect QTL for reproductive fitness traits were detected with both maps and the majority of these QTL were coincident with a dwarfing gene (<it>ZEO) </it>and the <it>VRS1 </it>gene, which determines the two-row and six-row germplasm groups of barley.</p> <p>Conclusions</p> <p>We demonstrate how sequenced RAD markers can be leveraged to produce high quality linkage maps for detection of single gene loci and QTLs. By combining SNP discovery and genotyping into parallel sequencing events, RAD markers should be a useful molecular breeding tool for a range of crop species. Expected improvements in cost and throughput of second and third-generation sequencing technologies will enable more powerful applications of the sequenced RAD marker system, including improvements in <it>de novo </it>genome assembly, development of ultra-high density genetic maps and association mapping.</p

    Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Considerations in applying association mapping (AM) to plant breeding are population structure and size: not accounting for structure and/or using small populations can lead to elevated false-positive rates. The principal determinants of population structure in cultivated barley are growth habit and inflorescence type. Both are under complex genetic control: growth habit is controlled by the epistatic interactions of several genes. For inflorescence type, multiple loss-of-function alleles in one gene lead to the same phenotype. We used these two traits as models for assessing the effectiveness of AM. This research was initiated using the CAP Core germplasm array (n = 102) assembled at the start of the Barley Coordinated Agricultural Project (CAP). This array was genotyped with 4,608 SNPs and we re-sequenced genes involved in morphology, growth and development. Larger arrays of breeding germplasm were subsequently genotyped and phenotyped under the auspices of the CAP project. This provided sets of 247 accessions phenotyped for growth habit and 2,473 accessions phenotyped for inflorescence type. Each of the larger populations was genotyped with 3,072 SNPs derived from the original set of 4,608.</p> <p>Results</p> <p>Significant associations with SNPs located in the vicinity of the loci involved in growth habit and inflorescence type were found in the CAP Core. Differentiation of true and spurious associations was not possible without <it>a priori </it>knowledge of the candidate genes, based on re-sequencing. The re-sequencing data were used to define allele types of the determinant genes based on functional polymorphisms. In a second round of association mapping, these synthetic markers based on allele types gave the most significant associations. When the synthetic markers were used as anchor points for analysis of interactions, we detected other known-function genes and candidate loci involved in the control of growth habit and inflorescence type. We then conducted association analyses - with SNP data only - in the larger germplasm arrays. For both vernalization sensitivity and inflorescence type, the most significant associations in the larger data sets were found with SNPs coincident with the synthetic markers used in the CAP Core and with SNPs detected via interaction analysis in the CAP Core.</p> <p>Conclusions</p> <p>Small and highly structured collections of germplasm, such as the CAP Core, are cost-effectively phenotyped and genotyped with high-throughput markers. They are also useful for characterizing allelic diversity at loci in germplasm of interest. Our results suggest that discovery-oriented exercises in AM in such small arrays may generate a large number of false-positives. However, if haplotypes in candidate genes are available, they may be used as anchors in an analysis of interactions to identify other candidate regions harboring genes determining target traits. Using larger germplasm arrays, genome regions where the principal genes determining vernalization sensitivity and row type are located were identified.</p

    Transcriptome Analysis of the Vernalization Response in Barley (Hordeum vulgare) Seedlings

    Get PDF
    Temperate cereals, such as wheat (Triticum spp.) and barley (Hordeum vulgare), respond to prolonged cold by becoming more tolerant of freezing (cold acclimation) and by becoming competent to flower (vernalization). These responses occur concomitantly during winter, but vernalization continues to influence development during spring. Previous studies identified VERNALIZATION1 (VRN1) as a master regulator of the vernalization response in cereals. The extent to which other genes contribute to this process is unclear. In this study the Barley1 Affymetrix chip was used to assay gene expression in barley seedlings during short or prolonged cold treatment. Gene expression was also assayed in the leaves of plants after prolonged cold treatment, in order to identify genes that show lasting responses to prolonged cold, which might contribute to vernalization-induced flowering. Many genes showed altered expression in response to short or prolonged cold treatment, but these responses differed markedly. A limited number of genes showed lasting responses to prolonged cold treatment. These include genes known to be regulated by vernalization, such as VRN1 and ODDSOC2, and also contigs encoding a calcium binding protein, 23-KD jasmonate induced proteins, an RNase S-like protein, a PR17d secretory protein and a serine acetyltransferase. Some contigs that were up-regulated by short term cold also showed lasting changes in expression after prolonged cold treatment. These include COLD REGULATED 14B (COR14B) and the barley homologue of WHEAT COLD SPECIFIC 19 (WSC19), which were expressed at elevated levels after prolonged cold. Conversely, two C-REPEAT BINDING FACTOR (CBF) genes showed reduced expression after prolonged cold. Overall, these data show that a limited number of barley genes exhibit lasting changes in expression after prolonged cold treatment, highlighting the central role of VRN1 in the vernalization response in cereals

    Gene and QTL detection in a three-way barley cross under selection by a mixed model with kinship information using SNPs

    Get PDF
    Quantitative trait locus (QTL) detection is commonly performed by analysis of designed segregating populations derived from two inbred parental lines, where absence of selection, mutation and genetic drift is assumed. Even for designed populations, selection cannot always be avoided, with as consequence varying correlation between genotypes instead of uniform correlation. Akin to linkage disequilibrium mapping, ignoring this type of genetic relatedness will increase the rate of false-positives. In this paper, we advocate using mixed models including genetic relatedness, or ‘kinship’ information for QTL detection in populations where selection forces operated. We demonstrate our case with a three-way barley cross, designed to segregate for dwarfing, vernalization and spike morphology genes, in which selection occurred. The population of 161 inbred lines was screened with 1,536 single nucleotide polymorphisms (SNPs), and used for gene and QTL detection. The coefficient of coancestry matrix was estimated based on the SNPs and imposed to structure the distribution of random genotypic effects. The model incorporating kinship, coancestry, information was consistently superior to the one without kinship (according to the Akaike information criterion). We show, for three traits, that ignoring the coancestry information results in an unrealistically high number of marker–trait associations, without providing clear conclusions about QTL locations. We used a number of widely recognized dwarfing and vernalization genes known to segregate in the studied population as landmarks or references to assess the agreement of the mapping results with a priori candidate gene expectations. Additional QTLs to the major genes were detected for all traits as well
    corecore