274 research outputs found

    Nitrogen removal in marine environments: recent findings and future research challenges

    Get PDF
    Respiratory reduction of nitrate (denitrification) is recognized as the most important process converting biologically available (fixed) nitrogen to N2. In current N cycle models, a major proportion of global marine denitrification (50–70%) is assumed to take place on the sea floor, particularly in organic rich continental margin sediments. Recent observations indicate that present conceptual views of denitrification and pathways of nitrate reduction and N2 formation are incomplete. Alternative N cycle pathways, particularly in sediments, include anaerobic ammonium oxidation to nitrite, nitrate and N2 by Mn-oxides, and anaerobic ammonium oxidation coupled to nitrite reduction and subsequent N2 mobilization. The discovery of new links and feedback mechanisms between the redox cycles of, e.g., C, N, S, Mn and Fe casts doubt on the present general understanding of the global N cycle. Recent models of the oceanic N budget indicate that total inputs are significantly smaller than estimated fixed N removal. The occurrence of alternative N reaction pathways further exacerbates the apparent imbalance as they introduce additional routes of N removal. In this contribution, we give a brief historical background of the conceptual understanding of N cycling in marine ecosystems, emphasizing pathways of aerobic and anaerobic N mineralization in marine sediments, and the implications of recently recognized metabolic pathways for N removal in marine environments

    Benthic nitrogen cycling in the North Sea

    Get PDF
    We present new data on the rates of sedimentary denitrification and its component processes (canonical denitrification, anammox and dissimilatory nitrate reduction to ammonium) for intertidal and subtidal sites in the North Sea using nitrogen isotope addition methods. We find overall average denitrification rates of 6.3 (range 0.4-10.6) µmol m-2h-1, similar to those previously reported for this region and other temperate shelf environments. We find canonical denitrification to be the dominant (>90%) process of the three. At the subtidal sites, most of the denitrification is supported by nitrate generated within the sediments, while at the intertidal site the main source is from the water column. We go on to consider the impact of these rates on nitrogen cycling within the North Sea region and compare the sediment core incubation rate results to estimates derived from modelling approaches. Model rates are somewhat higher than those directly measured and we consider possible reasons for this

    The regulation of oxygen to low concentrations in marine oxygen-minimum zones

    Get PDF
    The Bay of Bengal hosts persistent, measurable, but sub-micromolar, concentrations of oxygen in its oxygen-minimum zone (OMZ). Such low-oxygen conditions are not necessarily rare in the global ocean and seem also to characterize the OMZ of the Pescadero Basin in the Gulf of California, as well as the outer edges of otherwise anoxic OMZs, such as can be found, for example, in the Eastern Tropical North Pacific. We show here that biological controls on oxygen consumption are required to allow the semistable persistence of low-oxygen conditions in OMZ settings; otherwise, only small changes in physical mixing or rates of primary production would drive the OMZ between anoxic and oxic states with potentially large swings in oxygen concentration. We propose that two controls are active: an oxygen-dependent control on oxygen respiration and an oxygen inhibition of denitrification. These controls, working alone and together, can generate low-oxygen concentrations over a wide variability in ocean mixing parameters. More broadly, we discuss the oxygen regulation of organic matter cycling and N2 production in OMZ settings. Modern biogeochemical models of nitrogen and oxygen cycling in OMZ settings do contain some of the parameterizations that we explore here. However, these models have not been applied to understanding the persistence of low, but measurable, concentrations of oxygen in settings like the Bay of Bengal, nor have they been applied to understanding what biological/physical processes control the transition from a weakly oxygenated state to a “functionally” anoxic state with implications for nitrogen cycling. Therefore, we believe that the approach here illuminates the relationship between oxygen and the biogeochemical cycling of carbon and nitrogen in settings like the Bay of Bengal. Furthermore, we believe that our results could further inform large-scale ocean models seeking to explore how global warming might influence the spread of low-oxygen waters, influencing the cycles of oxygen, carbon, and nitrogen in OMZ settings

    Oxygen at Nanomolar Levels Reversibly Suppresses Process Rates and Gene Expression in Anammox and Denitrification in the Oxygen Minimum Zone off Northern Chile

    Get PDF
    A major percentage (20 to 40%) of global marine fixed-nitrogen loss occurs in oxygen minimum zones (OMZs). Concentrations of O[subscript 2] and the sensitivity of the anaerobic N[subscript 2]-producing processes of anammox and denitrification determine where this loss occurs. We studied experimentally how O[subscript 2] at nanomolar levels affects anammox and denitrification rates and the transcription of nitrogen cycle genes in the anoxic OMZ off Chile. Rates of anammox and denitrification were reversibly suppressed, most likely at the enzyme level. Fifty percent inhibition of N[subscript 2] and N[subscript 2]O production by denitrification was achieved at 205 and 297 nM O[subscript 2], respectively, whereas anammox was 50% inhibited at 886 nM O2. Coupled metatranscriptomic analysis revealed that transcripts encoding nitrous oxide reductase (nosZ), nitrite reductase (nirS), and nitric oxide reductase (norB) decreased in relative abundance above 200 nM O[subscript 2]. This O[subscript 2] concentration did not suppress the transcription of other dissimilatory nitrogen cycle genes, including nitrate reductase (narG), hydrazine oxidoreductase (hzo), and nitrite reductase (nirK). However, taxonomic characterization of transcripts suggested inhibition of narG transcription in gammaproteobacteria, whereas the transcription of anammox narG, whose gene product is likely used to oxidatively replenish electrons for carbon fixation, was not inhibited. The taxonomic composition of transcripts differed among denitrification enzymes, suggesting that distinct groups of microorganisms mediate different steps of denitrification. Sulfide addition (1 µM) did not affect anammox or O[subscript 2] inhibition kinetics but strongly stimulated N[subscript 2]O production by denitrification. These results identify new O[subscript 2] thresholds for delimiting marine nitrogen loss and highlight the utility of integrating biogeochemical and metatranscriptomic analyses.Gordon and Betty Moore FoundationAgouron InstituteDanish National Research Foundation (Grant DNRF53

    Imaging Oxygen Distribution in Marine Sediments. The Importance of Bioturbation and Sediment Heterogeneity

    Get PDF
    The influence of sediment oxygen heterogeneity, due to bioturbation, on diffusive oxygen flux was investigated. Laboratory experiments were carried out with 3 macrobenthic species presenting different bioturbation behaviour patterns:the polychaetes Nereis diversicolor and Nereis virens, both constructing ventilated galleries in the sediment column, and the gastropod Cyclope neritea, a burrowing species which does not build any structure. Oxygen two-dimensional distribution in sediments was quantified by means of the optical planar optode technique. Diffusive oxygen fluxes (mean and integrated) and a variability index were calculated on the captured oxygen images. All species increased sediment oxygen heterogeneity compared to the controls without animals. This was particularly noticeable with the polychaetes because of the construction of more or less complex burrows. Integrated diffusive oxygen flux increased with oxygen heterogeneity due to the production of interface available for solute exchanges between overlying water and sediments. This work shows that sediment heterogeneity is an important feature of the control of oxygen exchanges at the sediment–water interface

    Cubic Microcontainers Improve In Situ Colonic Mucoadhesion and Absorption of Amoxicillin in Rats

    Get PDF
    An increased interest in colonic drug delivery has led to a higher focus on the design of delivery devices targeting this part of the gastrointestinal tract. Microcontainers have previously facilitated an increase in oral bioavailability of drugs. The surface texture and shape of microcontainers have proven to influence the mucoadhesion ex vivo. In the present work, these findings were further investigated using an in situ closed-loop perfusion technique in the rat colon, which allowed for simultaneous evaluation of mucoadhesion of the microcontainers as well as drug absorption. Cylindrical, triangular and cubic microcontainers, with the same exterior surface area, were evaluated based on in vitro release, in situ mucoadhesion and in situ absorption of amoxicillin. Additionally, the mucoadhesion of empty cylindrical microcontainers with and without pillars on the top surface was investigated. From the microscopy analysis of the colon sections after the in situ study, it was evident that a significantly higher percentage of cubic microcontainers than cylindrical microcontainers adhered to the intestinal mucus. Furthermore, the absorption rate constants and blood samples indicated that amoxicillin in cubic microcontainers was absorbed more readily than when cylindrical or triangular microcontainers were dosed. This could be due to a higher degree of mucoadhesion for these particular microcontainers

    Nitrogen Loss from Pristine Carbonate-Rock Aquifers of the Hainich Critical Zone Exploratory (Germany) Is Primarily Driven by Chemolithoautotrophic Anammox Processes

    Get PDF
    Despite the high relevance of anaerobic ammonium oxidation (anammox) for nitrogen loss from marine systems, its relative importance compared to denitrification has less been studied in freshwater ecosystems, and our knowledge is especially scarce for groundwater. Surprisingly, phospholipid fatty acids (PLFA)-based studies identified zones with potentially active anammox bacteria within two superimposed pristine limestone aquifer assemblages of the Hainich Critical Zone Exploratory (CZE; Germany). We found anammox to contribute an estimated 83% to total nitrogen loss in suboxic groundwaters of these aquifer assemblages at rates of 3.5–4.7 nmol L−1 d−1, presumably favored over denitrification by low organic carbon availability. Transcript abundances of hzsA genes encoding hydrazine synthase exceeded nirS and nirK transcript abundances encoding denitrifier nitrite reductase by up to two orders of magnitude, providing further support of a predominance of anammox. Anammox bacteria, dominated by groups closely related to Cand. Brocadia fulgida, constituted up to 10.6% of the groundwater microbial community and were ubiquitously present across the two aquifer assemblages with indication of active anammox bacteria even in the presence of 103 μmol L−1 oxygen. Co-occurrence of hzsA and amoA gene transcripts encoding ammonia mono-oxygenase suggested coupling between aerobic and anaerobic ammonium oxidation under suboxic conditions. These results clearly demonstrate the relevance of anammox as a key process driving nitrogen loss from oligotrophic groundwater environments, which might further be enhanced through coupling with incomplete nitrification

    Experimental Incubations Elicit Profound Changes in Community Transcription in OMZ Bacterioplankton

    Get PDF
    Sequencing of microbial community RNA (metatranscriptome) is a useful approach for assessing gene expression in microorganisms from the natural environment. This method has revealed transcriptional patterns in situ, but can also be used to detect transcriptional cascades in microcosms following experimental perturbation. Unambiguously identifying differential transcription between control and experimental treatments requires constraining effects that are simply due to sampling and bottle enclosure. These effects remain largely uncharacterized for “challenging” microbial samples, such as those from anoxic regions that require special handling to maintain in situ conditions. Here, we demonstrate substantial changes in microbial transcription induced by sample collection and incubation in experimental bioreactors. Microbial communities were sampled from the water column of a marine oxygen minimum zone by a pump system that introduced minimal oxygen contamination and subsequently incubated in bioreactors under near in situ oxygen and temperature conditions. Relative to the source water, experimental samples became dominated by transcripts suggestive of cell stress, including chaperone, protease, and RNA degradation genes from diverse taxa, with strong representation from SAR11-like alphaproteobacteria. In tandem, transcripts matching facultative anaerobic gammaproteobacteria of the Alteromonadales (e.g., Colwellia) increased 4–13 fold up to 43% of coding transcripts, and encoded a diverse gene set suggestive of protein synthesis and cell growth. We interpret these patterns as taxon-specific responses to combined environmental changes in the bioreactors, including shifts in substrate or oxygen availability, and minor temperature and pressure changes during sampling with the pump system. Whether such changes confound analysis of transcriptional patterns may vary based on the design of the experiment, the taxonomic composition of the source community, and on the metabolic linkages between community members. These data highlight the impressive capacity for transcriptional changes within complex microbial communities, underscoring the need for caution when inferring in situ metabolism based on transcript abundances in experimental incubations
    corecore