868 research outputs found
Mass and orbit constraints of the gamma-ray binary LS 5039
We present the results of space-based photometric and ground-based
spectroscopic observing campaigns on the gamma-ray binary LS 5039. The new
orbital and physical parameters of the system are similar to former results,
except we found a lower eccentricity. Our MOST-data show that any broad-band
optical photometric variability at the orbital period is below the 2 mmag
level. Light curve simulations support the lower value of eccentricity and
imply that the mass of the compact object is higher than 1.8 solar masses.Comment: 2 pages, 1 figure (with 2 panels); to be published in the
Proceedings: From Interacting Binaries to Exoplanets: Essential Modeling
Tools, IAU Symposium 282 (18-22 July, 2011, Tatranska Lomnica, Slovakia
Type Iax SNe as a few-parameter family
We present direct spectroscopic modeling of five Type Iax supernovae (SNe)
with the one dimensional Monte Carlo radiative transfer code TARDIS. The
abundance tomography technique is used to map the chemical structure and
physical properties of the SN atmosphere. Through via fitting of multiple
spectral epochs with self-consistent ejecta models, we can then constrain the
location of some elements within the ejecta. The synthetic spectra of the
best-fit models are able to reproduce the flux continuum and the main
absorption features in the whole sample. We find that the mass fractions of
IGEs and IMEs show a decreasing trend toward the outer regions of the
atmospheres using density profiles similar to those of deflagration models in
the literature. Oxygen is the only element, which could be dominant at higher
velocities. The stratified abundance structure contradicts the well-mixed
chemical profiles predicted by pure deflagration models. Based on the derived
densities and abundances, a template model atmosphere is created for the SN Iax
class and compared to the observed spectra. Free parameters are the scaling of
the density profile, the velocity shift of the abundance template, and the peak
luminosity. The results of this test support the idea that all SNe Iax can be
described by a similar internal structure, which argues for a common origin of
this class of explosions.Comment: 21 pages, 7 tables, 16 figures, accepted by MNRA
Optimized Herschel/PACS photometer observing and data reduction strategies for moving solar system targets
The "TNOs are Cool!: A survey of the trans-Neptunian region" is a Herschel
Open Time Key Program that aims to characterize planetary bodies at the
outskirts of the Solar System using PACS and SPIRE data, mostly taken as
scan-maps. In this paper we summarize our PACS data reduction scheme that uses
a modified version of the standard pipeline for basic data reduction, optimized
for faint, moving targets. Due to the low flux density of our targets the
observations are confusion noise limited or at least often affected by bright
nearby background sources at 100 and 160\,m. To overcome these problems we
developed techniques to characterize and eliminate the background at the
positions of our targets and a background matching technique to compensate for
pointing errors. We derive a variety of maps as science data products that are
used depending on the source flux and background levels and the scientific
purpose. Our techniques are also applicable to a wealth of other Herschel solar
system photometric observations, e.g. comets and near-Earth asteroids. The
principles of our observing strategies and reduction techniques for moving
targets will also be applicable for similar surveys of future infrared space
projects.Comment: Accepted for publication in Experimental Astronom
InSight Aerothermal Environment Assessment
The Mars Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) spacecraft, which successfully touched down on the planet surface on November 26, 2018, was proposed as a near build-to-print copy of the Mars Phoenix vehicle to reduce the overall cost and risk of the mission. Since the lander payload and the atmospheric entry trajectory were similar enough to those of the Phoenix mission, it was expected that the Phoenix thermal protection material thickness would be sufficient to withstand the entry heat load. However, allowances were made for increasing the heatshield thickness because the planned spacecraft arrival date coincided with the Mars dust storm season. The aftbody Thermal Protection System (TPS) components were not expected to change. In a first for a US Mars mission, the aerothermal environments for InSight included estimates of radiative heat flux to the aftbody from the wake. The combined convective and radiative heat fluxes were used to determine if the as-flown Phoenix thermal protection system (TPS) design would be sufficient for InSight. Although the radiative heat fluxes on the aftbody were predicted to be comparable to, or even higher than the local convective heat fluxes, all analyses of the aftbody TPS showed that the design would still be adequate. Aerothermal environments were computed for the vehicle from post-flight reconstruction of the atmosphere and trajectory and compared with the design environments. These comparisons showed that the predicted as-flown conditions were less severe than the design conditions
A study of orientational ordering in a fluid of dipolar Gay-Berne molecules using density-functional theory
Published versio
Classification of Filippov type 3 singular points in planar bimodal piecewise smooth systems
We classify Filippov's type 3 singular points of planar bimodal piecewise smooth systems. These singular points consist of fold or cusp tangencies of the vector fields to both sides of a switching surface. For isolated analytic type 3 singular points there are 25 topological classes, up to time reversal. For isolated general type 3 singular points there are 40 topological classes, up to time reversal
Activity of 50 Long-Period Comets Beyond 5.2 AU
Remote investigations of the ancient solar system matter has been
traditionally carried out through the observations of long-period (LP) comets
that are less affected by solar irradiation than the short-period counterparts
orbiting much closer to the Sun. Here we summarize the results of our
decade-long survey of the distant activity of LP comets. We found that the most
important separation in the dataset is based on the dynamical nature of the
objects. Dynamically new comets are characterized by a higher level of activity
on average: the most active new comets in our sample can be characterized by
afrho values >3--4 higher than that of our most active returning comets. New
comets develop more symmetric comae, suggesting a generally isotropic outflow.
Contrary to this, the coma of recurrent comets can be less symmetrical,
ocassionally exhibiting negative slope parameters, suggesting sudden variations
in matter production. The morphological appearance of the observed comets is
rather diverse. A surprisingly large fraction of the comets have long, teniouos
tails, but the presence of impressive tails does not show a clear correlation
with the brightness of the comets.Comment: 21 pages, 4 figures, accepted for publication in A
- …