836 research outputs found

    Towards a Knowledge Graph Representation of FAIR Music Content for Exploration and Analysis

    Get PDF
    This paper introduces the ontological model for a FAIR digital library of music documents which takes into account a variety of music-related information, among which editorial information on documents and their production workflow as well as the score content and licensing information. The model is complemented with annotations (e.g. comments, fingering) on music documents produced by end-users, capable to add a social layer over the framework which enables the building of user-centric music applications. As a result, a machine-understandable knowledge graph of music content is defined, which can be queried, navigated and explored. On top of this, novel applications could be designed, like semantic workplaces where music scholars and musicians can find, analyse, compare, annotate and manipulate musical objects

    Clinical phenotypes of SARS-CoV-2 : implications for clinicians and researchers

    Get PDF
    Patients with COVID-19 present a broad spectrum of clinical presentation. Whereas hypoxaemia is the marker of severity, different strategies of management should be customised to five specific individual phenotypes. Many intubated patients present with phenotype 4, characterised by pulmonary hypoxic vasoconstriction, being associated with severe hypoxaemia with "normal" (>40 mL·cmH2O-1) lung compliance and likely representing pulmonary microvascular thrombosis. Phenotype 5 is often associated with high plasma procalcitonin and has low pulmonary compliance, Which is a result of co-infection or acute lung injury after noninvasive ventilation. Identifying these clinical phenotypes and applying a personalised approach would benefit the optimisation of therapies and improve outcomes

    Modeling of the degradation of poly(ethylene glycol)-co-(lactic acid)-dimethacrylate hydrogels

    Get PDF
    Because of their similarity with extracellular matrix, hydrogels are ideal substrates for cell growth. Hydrogels made of synthetic polymers are excellent alternatives to natural ones and offer the key advantage of precisely controllable degradation times. In this work, hydrogels have been prepared from modified poly(ethylene glycol) macromonomers, functionalized on both ends first with a few lactic acid units, and then with methacrylate groups. A library of hydrogels has been prepared using free- radical polymerization of the macromonomers, by changing both the macromonomer concentration and their type, i.e., the number of lactic acid repeating units. The degradation kinetics of these hydrogels, caused by the hydrolysis of the lactic acid units, have been carefully monitored in terms of swelling ratio, mass loss, and Young’s modulus. A complete mathematical model, accounting for hydrogel degradation, swelling, and reverse gelation, has been developed and used to predict all the measured quantities until complete disappearance of the gels. The model is capable of accurately predicting the time evolution of all the properties investigated experimentally. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and experimental data is presented

    Adipose-derived stem/stromal cells in kidney transplantation: Status quo and future perspectives

    Get PDF
    Kidney transplantation (KT) is the gold standard treatment of end-stage renal disease. Despite progressive advances in organ preservation, surgical technique, intensive care, and immunosuppression, long-term allograft survival has not significantly improved. Among the many peri-operative complications that can jeopardize transplant outcomes, ischemia-reperfusion injury (IRI) deserves special consideration as it is associated with delayed graft function, acute rejection, and premature transplant loss. Over the years, several strategies have been proposed to mitigate the impact of IRI and favor tolerance, with rather disappointing results. There is mounting evidence that adipose stem/stromal cells (ASCs) possess specific characteristics that could help prevent, reduce, or reverse IRI. Immunomodulating and tolerogenic properties have also been suggested, thus leading to the development of ASC-based prophylactic and therapeutic strategies in pre-clinical and clinical models of renal IRI and allograft rejection. ASCs are copious, easy to harvest, and readily expandable in culture. Furthermore, ASCs can secrete extracellular vesicles (EV) which may act as powerful mediators of tissue repair and tolerance. In the present review, we discuss the current knowledge on the mechanisms of action and therapeutic opportunities offered by ASCs and ASC-derived EVs in the KT setting. Most relevant pre-clinical and clinical studies as well as actual limitations and future perspective are highlighted

    Free Triiodothyronine: a novel predictor of postoperative atrial fibrillation.

    Get PDF

    FIC/FEM formulation with matrix stabilizing terms for incompressible flows at low and high Reynolds numbers

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-006-0060-yWe present a general formulation for incompressible fluid flow analysis using the finite element method. The necessary stabilization for dealing with convective effects and the incompressibility condition are introduced via the Finite Calculus method using a matrix form of the stabilization parameters. This allows to model a wide range of fluid flow problems for low and high Reynolds numbers flows without introducing a turbulence model. Examples of application to the analysis of incompressible flows with moderate and large Reynolds numbers are presented.Peer ReviewedPostprint (author's final draft

    Coherence and Consciousness: Study of Fronto-Parietal Gamma Synchrony in Patients with Disorders of Consciousness

    Get PDF
    Evaluation of consciousness needs to be supported by the evidence of brain activation during external stimulation in patients with unresponsive wakefulness syndrome (UWS). Assessment of patients should include techniques that do not depend on overt motor responses and allow an objective investigation of the spontaneous patterns of brain activity. In particular, electroencephalography (EEG) coherence allows to easily measure functional relationships between pairs of neocortical regions and seems to be closely correlated with cognitive or behavioral measures. Here, we show the contribution of higher order associative cortices of patients with disorder of consciousness (N\ua0=\ua026) in response to simple sensory stimuli, such as visual, auditory and noxious stimulation. In all stimulus modalities an increase of short-range parietal and long-range fronto-parietal coherences in gamma frequencies were seen in the controls and minimally conscious patients. By contrast, UWS patients showed no significant modifications in the EEG patterns after stimulation. Our results suggest that UWS patients can not activate associative cortical networks, suggesting a lack of information integration. In fact, fronto-parietal circuits result to be connectively disrupted, conversely to patients that exhibit some form of consciousness. In the light of this, EEG coherence can be considered a powerful tool to quantify the involvement of cognitive processing giving information about the integrity of fronto-parietal network. This measure can represent a new neurophysiological marker of unconsciousness and help in determining an accurate diagnosis and rehabilitative intervention in each patient

    Poly(I:C) and CpG-ODN combined aerosolization to treat lung metastases and counter the immunosuppressive microenvironment

    Get PDF
    The immunostimulatory ability of synthetic oligonucleotides containing CpG motifs (CpG-ODN), agonists of Toll-like receptor 9 (TLR9), can be harnessed to promote antitumor immunity by their application at the tumor site to stimulate local activation of innate immunity; however, particularly in the lung, tumor-associated immunosuppression can subvert such antitumor innate immune responses. To locally maintain continuous activation of innate subpopulations while inhibiting immunosuppressive cells, we evaluated aerosol delivery CpG-ODN combined with Poly(I:C), a TLR3 agonist able to convert tumor-supporting macrophages to tumoricidal effectors, in the treatment of B16 melanoma lung metastases in C57BL/6 mice. Aerosolization of CpG-ODN with Poly(I:C) into the bronchoalveolar space reduced the presence of M2-associated arginase- and IL-10-secreting macrophages in tumor-bearing lungs and increased the antitumor activity of aerosolized CpG-ODN alone against B16 lung metastases without apparent signs of toxicity or injury of the bronchial-bronchiolar structures and alveolar walls. Moreover, CpG-ODN/Poly(I:C) aerosol combined with dacarbazine, a therapeutic agent used in patients with inoperable metastatic melanoma able to exert immunostimulatory effects, led to a significant increase in antitumor activity as compared to treatments with aerosolized CpG-ODN/Poly(I:C) or dacarbazine alone. This effect was related to an enhanced recruitment and cytotoxic activity of tumor-infiltrating NK cells in the lung. Our results point to aerosol delivery as a convenient approach for repeated applications of immunostimulants in patients with lung metastases to maintain a continuous local activation of innate immune cells while suppressing polarization of tumor-infiltrating macrophages to an M2 phenotype
    • …
    corecore