7 research outputs found

    Point defect segregation and its role in the detrimental nature of Frank partials in Cu(In,Ga)Se2 thin-film absorbers

    Get PDF
    The interaction of point defects with extrinsic Frank loops in the photovoltaic absorber material Cu(In,Ga)Se₂ was studied by aberration-corrected scanning transmission electron microscopy in combination with electron energy-loss spectroscopy and calculations based on density-functional theory. We find that Cu accumulation occurs outside of the dislocation cores bounding the stacking fault due to strain-induced preferential formation of Cu‾²In, which can be considered a harmful hole trap in Cu(In,Ga)Se₂. In the core region of the cation-containing α-core, Cu is found in excess. The calculations reveal that this is because Cu on In-sites is lowering the energy of this dislocation core. Within the Se-containing β-core, in contrast, only a small excess of Cu is observed, which is explained by the fact that Cu¡ⁿ and Cu¡ are the preferred defects inside this core, but their formation energies are positive. The decoration of both cores induces deep defect states, which enhance nonradiative recombination. Thus, the annihilation of Frank loops during the Cu(In,Ga)Se₂ growth is essential in order to obtain absorbers with high conversion efficiencies

    Elemental redistributions at structural defects in Cu(In,Ga)Se₂ thin films for solar cells

    Get PDF
    The microstructural evolution of Cu(In,Ga)Se2 absorber layers during a three-stage-type co-evaporation process was studied to elucidate the effect of a Cu-rich stage on the formation of extended structural defects. Defect densities for two Cu-poor samples, one interrupted before and one after this crucial Cu-rich composition stage, were investigated by scanning transmission electron microscopy (STEM) imaging. The structure and chemical nature of individual defects were investigated by aberration-corrected high-resolution STEM in combination with electron energy-loss spectroscopy on the atomic-scale. In spite of the different defect densities between the two samples, most of the individual defects exhibited similar chemistry. In particular, the elemental distributions of atomic columns at {112} twin planes, which are very frequent in Cu(In,Ga)Se2 thin films, were found to be the same as in the defect-free grain interiors. In contrast, within grain boundaries, dislocation cores, and other structurally more complex defects, elemental redistributions of Cu and In were observed

    Problematical legal aspects of determination of parenthood

    Get PDF
    The Abstract The aim of my thesis is to find and describe the problematic aspects of the determination of parenthood. I chose four areas of the determination of parenthood, which can lead to various complications - assisted reproduction, surrogacy, secret childbirths and anonymous births. In the first chapter of the thesis I deal with the legal aspects of the determination of parenthood. I examine mandatory determination of maternity and various assumptions of paternity. With the development of relations in the society and of the reproductive medicine, there emerge possibilities doubting the traditional legal principles of the determination of parenthood. Mother is not always certain anymore and there are five presumptions of paternity in the Czech legal order nowadays, compared to the traditional three. The second chapter is devoted to the issue of assisted reproduction. Assisted reproduction is a modern and rapidly developing area of medicine that allows infertile couples to have their own child. It is a medical specialty that requires a broad legal framework to prevent its abuse. At the end of a successful medical procedure a new life is coming into existence and such area must be regulated. The third chapter, entitled Surrogacy, builds on the previous chapter. Surrogacy is often discussed area of..

    Stacking fault reduction during annealing in Cu-poor CuInSe2 thin film solar cell absorbers analyzed by in situ XRD and grain growth modeling

    Get PDF
    Buried wurtzite structures composed by stacking faults of the {111} planes in zinc-blende and {112} planes in chalcopyrite structures can result in barriers for charge carrier transport. A precise understanding of stacking fault annihilation mechanisms is therefore crucial for the development of effective deposition processes. During co-evaporation of Cu(In,Ga)Se2—a photovoltaic absorber material showing record efficiencies of up to 22.9% for thin film solar cells—a reduction of stacking faults occurs at the transition from a Cu-poor to a Cu-rich film composition, parallel to grain growth, which is suggesting that the two phenomena are coupled. Here, we show by in situ synchrotron X-ray diffraction during annealing of Cu-poor CuInSe2 thin films that stacking faults can be strongly reduced through annealing, without passing through a Cu-rich film composition. We simulate the evolution of the X-ray diffraction stacking fault signal with a simple numerical model of grain growth driven by stacking fault energy and grain boundary curvature. The results support the hypothesis that the stacking fault reduction can be explained by grain growth. The model is used to make predictions on annealing times and temperatures required for stacking fault reduction and could be adapted for polycrystalline thin films with similar morphology

    Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface

    Get PDF
    The electrical and optoelectronic properties of materials are determined by the chemical potentials of their constituents. The relative density of point defects is thus controlled, allowing to craft microstructure, trap densities and doping levels. Here, we show that the chemical potentials of chalcogenide materials near the edge of their existence region are not only determined during growth but also at room temperature by post-processing. In particular, we study the generation of anion vacancies, which are critical defects in chalcogenide semiconductors and topological insulators. The example of CuInSe2 photovoltaic semiconductor reveals that single phase material crosses the phase boundary and forms surface secondary phases upon oxidation, thereby creating anion vacancies. The arising metastable point defect population explains a common root cause of performance losses. This study shows how selective defect annihilation is attained with tailored chemical treatments that mitigate anion vacancy formation and improve the performance of CuInSe2 solar cells
    corecore