141 research outputs found
Plasticity of the cis-Regulatory Input Function of a Gene
The transcription rate of a gene is often controlled by several regulators that bind specific sites in the gene's cis-regulatory region. The combined effect of these regulators is described by a cis-regulatory input function. What determines the form of an input function, and how variable is it with respect to mutations? To address this, we employ the well-characterized lac operon of Escherichia coli, which has an elaborate input function, intermediate between Boolean AND-gate and OR-gate logic. We mapped in detail the input function of 12 variants of the lac promoter, each with different point mutations in the regulator binding sites, by means of accurate expression measurements from living cells. We find that even a few mutations can significantly change the input function, resulting in functions that resemble Pure AND gates, OR gates, or single-input switches. Other types of gates were not found. The variant input functions can be described in a unified manner by a mathematical model. The model also lets us predict which functions cannot be reached by point mutations. The input function that we studied thus appears to be plastic, in the sense that many of the mutations do not ruin the regulation completely but rather result in new ways to integrate the inputs
Gluon mass generation in the PT-BFM scheme
In this article we study the general structure and special properties of the
Schwinger-Dyson equation for the gluon propagator constructed with the pinch
technique, together with the question of how to obtain infrared finite
solutions, associated with the generation of an effective gluon mass.
Exploiting the known all-order correspondence between the pinch technique and
the background field method, we demonstrate that, contrary to the standard
formulation, the non-perturbative gluon self-energy is transverse
order-by-order in the dressed loop expansion, and separately for gluonic and
ghost contributions. We next present a comprehensive review of several subtle
issues relevant to the search of infrared finite solutions, paying particular
attention to the role of the seagull graph in enforcing transversality, the
necessity of introducing massless poles in the three-gluon vertex, and the
incorporation of the correct renormalization group properties. In addition, we
present a method for regulating the seagull-type contributions based on
dimensional regularization; its applicability depends crucially on the
asymptotic behavior of the solutions in the deep ultraviolet, and in particular
on the anomalous dimension of the dynamically generated gluon mass. A
linearized version of the truncated Schwinger-Dyson equation is derived, using
a vertex that satisfies the required Ward identity and contains massless poles
belonging to different Lorentz structures. The resulting integral equation is
then solved numerically, the infrared and ultraviolet properties of the
obtained solutions are examined in detail, and the allowed range for the
effective gluon mass is determined. Various open questions and possible
connections with different approaches in the literature are discussed.Comment: 54 pages, 24 figure
Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells
Actin dynamics are required for proper cilia spacing, global coordination of cilia polarity, and coordination of metachronic cilia beating, whereas cytoplasmic microtubule dynamics are required for local coordination of polarity between neighboring cilia
Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics
<p>Abstract</p> <p>Background</p> <p>The mechanical properties of wood are largely determined by the orientation of cellulose microfibrils in secondary cell walls. Several genes and their allelic variants have previously been found to affect microfibril angle (MFA) and wood stiffness; however, the molecular mechanisms controlling microfibril orientation and mechanical strength are largely uncharacterised. In the present study, cDNA microarrays were used to compare gene expression in developing xylem with contrasting stiffness and MFA in juvenile <it>Pinus radiata </it>trees in order to gain further insights into the molecular mechanisms underlying microfibril orientation and cell wall mechanics.</p> <p>Results</p> <p>Juvenile radiata pine trees with higher stiffness (HS) had lower MFA in the earlywood and latewood of each ring compared to low stiffness (LS) trees. Approximately 3.4 to 14.5% out of 3, 320 xylem unigenes on cDNA microarrays were differentially regulated in juvenile wood with contrasting stiffness and MFA. Greater variation in MFA and stiffness was observed in earlywood compared to latewood, suggesting earlywood contributes most to differences in stiffness; however, 3-4 times more genes were differentially regulated in latewood than in earlywood. A total of 108 xylem unigenes were differentially regulated in juvenile wood with HS and LS in at least two seasons, including 43 unigenes with unknown functions. Many genes involved in cytoskeleton development and secondary wall formation (cellulose and lignin biosynthesis) were preferentially transcribed in wood with HS and low MFA. In contrast, several genes involved in cell division and primary wall synthesis were more abundantly transcribed in LS wood with high MFA.</p> <p>Conclusions</p> <p>Microarray expression profiles in <it>Pinus radiata </it>juvenile wood with contrasting stiffness has shed more light on the transcriptional control of microfibril orientation and the mechanical properties of wood. The identified candidate genes provide an invaluable resource for further gene function and association genetics studies aimed at deepening our understanding of cell wall biomechanics with a view to improving the mechanical properties of wood.</p
Anesthesia advanced circulatory life support
The constellation of advanced cardiac life support (ACLS) events, such as gas embolism, local anesthetic overdose, and spinal bradycardia, in the perioperative setting differs from events in the pre-hospital arena. As a result, modification of traditional ACLS protocols allows for more specific etiology-based resuscitation.
Perioperative arrests are both uncommon and heterogeneous and have not been described or studied to the same extent as cardiac arrest in the community. These crises are usually witnessed, frequently anticipated, and involve a rescuer physician with knowledge of the patient's comorbidities and coexisting anesthetic or surgically related pathophysiology. When the health care provider identifies the probable cause of arrest, the practitioner has the ability to initiate medical management rapidly.
Recommendations for management must be predicated on expert opinion and physiological understanding rather than on the standards currently being used in the generation of ACLS protocols in the community. Adapting ACLS algorithms and considering the differential diagnoses of these perioperative events may prevent cardiac arrest
Molecular analysis of the myosin gene family in Arabidopsis thaliana
Myosin is believed to act as the molecular motor for many actin-based motility processes in eukaryotes. It is becoming apparent that a single species may possess multiple myosin isoforms, and at least seven distinct classes of myosin have been identified from studies of animals, fungi, and protozoans. The complexity of the myosin heavy-chain gene family in higher plants was investigated by isolating and characterizing myosin genomic and cDNA clones from Arabidopsis thaliana . Six myosin-like genes were identified from three polymerase chain reaction (PCR) products (PCR1, PCR11, PCR43) and three cDNA clones (ATM2, MYA2, MYA3). Sequence comparisons of the deduced head domains suggest that these myosins are members of two major classes. Analysis of the overall structure of the ATM2 and MYA2 myosins shows that they are similar to the previously-identified ATM1 and MYA1 myosins, respectively. The MYA3 appears to possess a novel tail domain, with five IQ repeats, a six-member imperfect repeat, and a segment of unique sequence. Northern blot analyses indicate that some of the Arabidopsis myosin genes are preferentially expressed in different plant organs. Combined with previous studies, these results show that the Arabidopsis genome contains at least eight myosin-like genes representing two distinct classes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43437/1/11103_2004_Article_BF00040695.pd
- …