1,540 research outputs found

    Dipolar dynamos in stratified systems

    Get PDF
    Observations of low-mass stars reveal a variety of magnetic field topologies ranging from large-scale, axial dipoles to more complex magnetic fields. At the same time, three-dimensional spherical simulations of convectively driven dynamos reproduce a similar diversity, which is commonly obtained either with Boussinesq models or with more realistic models based on the anelastic approximation, which take into account the variation of the density with depth throughout the convection zone. Nevertheless, a conclusion from different anelastic studies is that dipolar solutions seem more difficult to obtain as soon as substantial stratifications are considered. In this paper, we aim at clarifying this point by investigating in more detail the influence of the density stratification on dipolar dynamos. To that end, we rely on a systematic parameter study that allows us to clearly follow the evolution of the stability domain of the dipolar branch as the density stratification is increased. The impact of the density stratification both on the dynamo onset and the dipole collapse is discussed and compared to previous Boussinesq results. Furthermore, our study indicates that the loss of the dipolar branch does not ensue from a specific modification of the dynamo mechanisms related to the background stratification, but could instead result from a bias as our observations naturally favour a certain domain in the parameter space characterized by moderate values of the Ekman number, owing to current computational limitations. Moreover, we also show that the critical magnetic Reynolds number of the dipolar branch is scarcely modified by the increase of the density stratification, which provides an important insight into the global understanding of the impact of the density stratification on the stability domain of the dipolar dynamo branch

    Topology and field strength in spherical, anelastic dynamo simulations

    Get PDF
    Numerical modelling of convection driven dynamos in the Boussinesq approximation revealed fundamental characteristics of the dynamo-generated magnetic fields and the fluid flow. Because these results were obtained for an incompressible fluid, their validity for gas planets and stars remains to be assessed. A common approach is to take some density stratification into account with the so-called anelastic approximation. The validity of previous results obtained in the Boussinesq approximation is tested for anelastic models. We point out and explain specific differences between both types of models, in particular with respect to the field geometry and the field strength, but we also compare scaling laws for the velocity amplitude, the magnetic dissipation time, and the convective heat flux. Our investigation is based on a systematic parameter study of spherical dynamo models in the anelastic approximation. We make use of a recently developed numerical solver and provide results for the test cases of the anelastic dynamo benchmark. The dichotomy of dipolar and multipolar dynamos identified in Boussinesq simulations is also present in our sample of anelastic models. Dipolar models require that the typical length scale of convection is an order of magnitude larger than the Rossby radius. However, the distinction between both classes of models is somewhat less explicit than in previous studies. This is mainly due to two reasons: we found a number of models with a considerable equatorial dipole contribution and an intermediate overall dipole field strength. Furthermore, a large density stratification may hamper the generation of dipole dominated magnetic fields. Previously proposed scaling laws, such as those for the field strength, are similarly applicable to anelastic models. It is not clear, however, if this consistency necessarily implies similar dynamo processes in both settings.Comment: 14 pages, 11 figure

    A minimal model for spontaneous cell polarization and edge activity in oscillating, rotating and migrating cells

    Full text link
    How the cells break symmetry and organize their edge activity to move directionally is a fun- damental question in cell biology. Physical models of cell motility commonly rely on gradients of regulatory factors and/or feedback from the motion itself to describe polarization of edge activity. Theses approaches, however, fail to explain cell behavior prior to the onset of polarization. Our analysis using the model system of polarizing and moving fish epidermal keratocytes suggests a novel and simple principle of self-organization of cell activity in which local cell-edge dynamics depends on the distance from the cell center, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviors. Our findings indicate that spontaneous polarization, persistent motion, and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell center.Comment: 8 pages, 5 figure

    Modeling the effect of soil meso- and macropores topology on the biodegradation of a soluble carbon substrate

    Get PDF
    Soil structure and interactions between biotic and abiotic processes are increasingly recognized as important for explaining the large uncertainties in the outputs of macroscopic SOM decomposition models. We present a numerical analysis to assess the role of meso- and macropore topology on the biodegradation of a soluble carbon substrate in variably water saturated and pure diffusion conditions . Our analysis was built as a complete factorial design and used a new 3D pore-scale model, LBioS, that couples a diffusion Lattice-Boltzmann model and a compartmental biodegradation model. The scenarios combined contrasted modalities of four factors: meso- and macropore space geometry, water saturation, bacterial distribution and physiology. A global sensitivity analysis of these factors highlighted the role of physical factors in the biodegradation kinetics of our scenarios. Bacteria location explained 28% of the total variance in substrate concentration in all scenarios, while the interactions among location, saturation and geometry explained up to 51% of it

    Can we predict the duration of an interglacial?

    Get PDF
    Differences in the duration of interglacials have long been apparent in palaeoclimate records of the Late and Middle Pleistocene. However, a systematic evaluation of such differences has been hampered by the lack of a metric that can be applied consistently through time and by difficulties in separating the local from the global component in various proxies. This, in turn, means that a theoretical framework with predictive power for interglacial duration has remained elusive. Here we propose that the interval between the terminal oscillation of the bipolar seesaw and three thousand years (kyr) before its first major reactivation provides an estimate that approximates the length of the sea-level highstand, a measure of interglacial duration. We apply this concept to interglacials of the last 800 kyr by using a recently-constructed record of interhemispheric variability. The onset of interglacials occurs within 2 kyr of the boreal summer insolation maximum/precession minimum and is consistent with the canonical view of Milankovitch forcing pacing the broad timing of interglacials. Glacial inception always takes place when obliquity is decreasing and never after the obliquity minimum. The phasing of precession and obliquity appears to influence the persistence of interglacial conditions over one or two insolation peaks, leading to shorter (~ 13 kyr) and longer (~ 28 kyr) interglacials. Glacial inception occurs approximately 10 kyr after peak interglacial conditions in temperature and CO2, representing a characteristic timescale of interglacial decline. Second-order differences in duration may be a function of stochasticity in the climate system, or small variations in background climate state and the magnitude of feedbacks and mechanisms contributing to glacial inception, and as such, difficult to predict. On the other hand, the broad duration of an interglacial may be determined by the phasing of astronomical parameters and the history of insolation, rather than the instantaneous forcing strength at inception

    Dynamics of cell shape inheritance in fission yeast.

    Get PDF
    Every cell has a characteristic shape key to its fate and function. That shape is not only the product of genetic design and of the physical and biochemical environment, but it is also subject to inheritance. However, the nature and contribution of cell shape inheritance to morphogenetic control is mostly ignored. Here, we investigate morphogenetic inheritance in the cylindrically-shaped fission yeast Schizosaccharomyces pombe. Focusing on sixteen different 'curved' mutants--a class of mutants which often fail to grow axially straight--we quantitatively characterize their dynamics of cell shape inheritance throughout generations. We show that mutants of similar machineries display similar dynamics of cell shape inheritance, and exploit this feature to show that persistent axial cell growth in S. pombe is secured by multiple, separable molecular pathways. Finally, we find that one of those pathways corresponds to the swc2-swr1-vps71 SWR1/SRCAP chromatin remodelling complex, which acts additively to the known mal3-tip1-mto1-mto2 microtubule and tea1-tea2-tea4-pom1 polarity machineries.This is the published manuscript. It has been published by PLoS in PLoS ONE and is available online here: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0106959

    Optical properties of an ensemble of G-centers in silicon

    Full text link
    We addressed the carrier dynamics in so-called G-centers in silicon (consisting of substitutional-interstitial carbon pairs interacting with interstitial silicons) obtained via ion implantation into a silicon-on-insulator wafer. For this point defect in silicon emitting in the telecommunication wavelength range, we unravel the recombination dynamics by time-resolved photoluminescence spectroscopy. More specifically, we performed detailed photoluminescence experiments as a function of excitation energy, incident power, irradiation fluence and temperature in order to study the impact of radiative and non-radiative recombination channels on the spectrum, yield and lifetime of G-centers. The sharp line emitting at 969 meV (\sim1280 nm) and the broad asymmetric sideband developing at lower energy share the same recombination dynamics as shown by time-resolved experiments performed selectively on each spectral component. This feature accounts for the common origin of the two emission bands which are unambiguously attributed to the zero-phonon line and to the corresponding phonon sideband. In the framework of the Huang-Rhys theory with non-perturbative calculations, we reach an estimation of 1.6±\pm0.1 \angstrom for the spatial extension of the electronic wave function in the G-center. The radiative recombination time measured at low temperature lies in the 6 ns-range. The estimation of both radiative and non-radiative recombination rates as a function of temperature further demonstrate a constant radiative lifetime. Finally, although G-centers are shallow levels in silicon, we find a value of the Debye-Waller factor comparable to deep levels in wide-bandgap materials. Our results point out the potential of G-centers as a solid-state light source to be integrated into opto-electronic devices within a common silicon platform
    corecore