280 research outputs found
A quantum logical and geometrical approach to the study of improper mixtures
We study improper mixtures from a quantum logical and geometrical point of
view. Taking into account the fact that improper mixtures do not admit an
ignorance interpretation and must be considered as states in their own right,
we do not follow the standard approach which considers improper mixtures as
measures over the algebra of projections. Instead of it, we use the convex set
of states in order to construct a new lattice whose atoms are all physical
states: pure states and improper mixtures. This is done in order to overcome
one of the problems which appear in the standard quantum logical formalism,
namely, that for a subsystem of a larger system in an entangled state, the
conjunction of all actual properties of the subsystem does not yield its actual
state. In fact, its state is an improper mixture and cannot be represented in
the von Neumann lattice as a minimal property which determines all other
properties as is the case for pure states or classical systems. The new lattice
also contains all propositions of the von Neumann lattice. We argue that this
extension expresses in an algebraic form the fact that -alike the classical
case- quantum interactions produce non trivial correlations between the
systems. Finally, we study the maps which can be defined between the extended
lattice of a compound system and the lattices of its subsystems.Comment: submitted to the Journal of Mathematical Physic
A geometrical origin for the covariant entropy bound
Causal diamond-shaped subsets of space-time are naturally associated with
operator algebras in quantum field theory, and they are also related to the
Bousso covariant entropy bound. In this work we argue that the net of these
causal sets to which are assigned the local operator algebras of quantum
theories should be taken to be non orthomodular if there is some lowest scale
for the description of space-time as a manifold. This geometry can be related
to a reduction in the degrees of freedom of the holographic type under certain
natural conditions for the local algebras. A non orthomodular net of causal
sets that implements the cutoff in a covariant manner is constructed. It gives
an explanation, in a simple example, of the non positive expansion condition
for light-sheet selection in the covariant entropy bound. It also suggests a
different covariant formulation of entropy bound.Comment: 20 pages, 8 figures, final versio
On the lattice structure of probability spaces in quantum mechanics
Let C be the set of all possible quantum states. We study the convex subsets
of C with attention focused on the lattice theoretical structure of these
convex subsets and, as a result, find a framework capable of unifying several
aspects of quantum mechanics, including entanglement and Jaynes' Max-Ent
principle. We also encounter links with entanglement witnesses, which leads to
a new separability criteria expressed in lattice language. We also provide an
extension of a separability criteria based on convex polytopes to the infinite
dimensional case and show that it reveals interesting facets concerning the
geometrical structure of the convex subsets. It is seen that the above
mentioned framework is also capable of generalization to any statistical theory
via the so-called convex operational models' approach. In particular, we show
how to extend the geometrical structure underlying entanglement to any
statistical model, an extension which may be useful for studying correlations
in different generalizations of quantum mechanics.Comment: arXiv admin note: substantial text overlap with arXiv:1008.416
A topos for algebraic quantum theory
The aim of this paper is to relate algebraic quantum mechanics to topos
theory, so as to construct new foundations for quantum logic and quantum
spaces. Motivated by Bohr's idea that the empirical content of quantum physics
is accessible only through classical physics, we show how a C*-algebra of
observables A induces a topos T(A) in which the amalgamation of all of its
commutative subalgebras comprises a single commutative C*-algebra. According to
the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter
has an internal spectrum S(A) in T(A), which in our approach plays the role of
a quantum phase space of the system. Thus we associate a locale (which is the
topos-theoretical notion of a space and which intrinsically carries the
intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which
is the noncommutative notion of a space). In this setting, states on A become
probability measures (more precisely, valuations) on S(A), and self-adjoint
elements of A define continuous functions (more precisely, locale maps) from
S(A) to Scott's interval domain. Noting that open subsets of S(A) correspond to
propositions about the system, the pairing map that assigns a (generalized)
truth value to a state and a proposition assumes an extremely simple
categorical form. Formulated in this way, the quantum theory defined by A is
essentially turned into a classical theory, internal to the topos T(A).Comment: 52 pages, final version, to appear in Communications in Mathematical
Physic
Hadronization of a Quark-Gluon Plasma in the Chromodielectric Model
We have carried out simulations of the hadronization of a hot, ideal but
effectively massive quark-gluon gas into color neutral clusters in the
framework of the semi-classical SU(3) chromodielectric model. We have studied
the possible quark-gluon compositions of clusters as well as the final mass
distribution and spectra, aiming to obtain an insight into relations between
hadronic spectral properties and the confinement mechanism in this model.Comment: 34 pages, 37 figure
Information-theoretic principle entails orthomodularity of a lattice
Quantum logical axiomatic systems for quantum theory usually include a
postulate that a lattice under consideration is orthomodular. We propose a
derivation of orthomodularity from an information-theoretic axiom. This
provides conceptual clarity and removes a long-standing puzzle about the
meaning of orthomodularity.Comment: Version prior to published, with slight modification
Bohrification of operator algebras and quantum logic
Following Birkhoff and von Neumann, quantum logic has traditionally been
based on the lattice of closed linear subspaces of some Hilbert space, or, more
generally, on the lattice of projections in a von Neumann algebra A.
Unfortunately, the logical interpretation of these lattices is impaired by
their nondistributivity and by various other problems. We show that a possible
resolution of these difficulties, suggested by the ideas of Bohr, emerges if
instead of single projections one considers elementary propositions to be
families of projections indexed by a partially ordered set C(A) of appropriate
commutative subalgebras of A. In fact, to achieve both maximal generality and
ease of use within topos theory, we assume that A is a so-called Rickart
C*-algebra and that C(A) consists of all unital commutative Rickart
C*-subalgebras of A. Such families of projections form a Heyting algebra in a
natural way, so that the associated propositional logic is intuitionistic:
distributivity is recovered at the expense of the law of the excluded middle.
Subsequently, generalizing an earlier computation for n-by-n matrices, we
prove that the Heyting algebra thus associated to A arises as a basis for the
internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the
"Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of
functors from C(A) to the category of sets. We explain the relationship of this
construction to partial Boolean algebras and Bruns-Lakser completions. Finally,
we establish a connection between probability measure on the lattice of
projections on a Hilbert space H and probability valuations on the internal
Gelfand spectrum of A for A = B(H).Comment: 31 page
Evaluation of probabilistic photometric redshift estimation approaches for The Rubin Observatory Legacy Survey of Space and Time (LSST)
Many scientific investigations of photometric galaxy surveys require redshift estimates, whose uncertainty properties are best encapsulated by photometric redshift (photo-z) posterior probability density functions (PDFs). A plethora of photo-z PDF estimation methodologies abound, producing discrepant results with no consensus on a preferred approach. We present the results of a comprehensive experiment comparing 12 photo-z algorithms applied to mock data produced for The Rubin Observatory Legacy Survey of Space and Time Dark Energy Science Collaboration. By supplying perfect prior information, in the form of the complete template library and a representative training set as inputs to each code, we demonstrate the impact of the assumptions underlying each technique on the output photo-z PDFs. In the absence of a notion of true, unbiased photo-z PDFs, we evaluate and interpret multiple metrics of the ensemble properties of the derived photo-z PDFs as well as traditional reductions to photo-z point estimates. We report systematic biases and overall over/underbreadth of the photo-z PDFs of many popular codes, which may indicate avenues for improvement in the algorithms or implementations. Furthermore, we raise attention to the limitations of established metrics for assessing photo-z PDF accuracy; though we identify the conditional density estimate loss as a promising metric of photo-z PDF performance in the case where true redshifts are available but true photo-z PDFs are not, we emphasize the need for science-specific performance metrics
- âŠ