268 research outputs found

    The first observed stellar occultations by the irregular satellite Phoebe (Saturn IX) and improved rotational period

    Get PDF
    peer reviewedWe report six stellar occultations by Phoebe (Saturn IX), an irregular satellite of Saturn, obtained between mid-2017 and mid-2019. The 2017 July 6 event was the first stellar occultation by an irregular satellite ever observed. The occultation chords were compared to a 3D shape model of the satellite obtained from Cassini observations. The rotation period available in the literature led to a sub-observer point at the moment of the observed occultations where the chords could not fit the 3D model. A procedure was developed to identify the correct sub-observer longitude. It allowed us to obtain the rotation period with improved precision compared to the currently known value from literature. We show that the difference between the observed and the predicted sub-observer longitude suggests two possible solutions for the rotation period. By comparing these values with recently observed rotational light curves and single- chord stellar occultations, we can identify the best solution for Phoebe's rotational period as 9.27365 ± 0.00002 h. From the stellar occultations, we also obtained six geocentric astrometric positions in the ICRS as realized by the Gaia DR2 with uncertainties at the 1-mas level

    Boring bivalve traces in modern reef and deeper-water macroid and rhodolith beds

    Get PDF
    Macroids and rhodoliths, made by encrusting acervulinid foraminifera and coralline algae, are widely recognized as bioengineers providing relatively stable microhabitats and increasing biodiversity for other species. Macroid and rhodolith beds occur in different depositional settings at various localities and bathymetries worldwide. Six case studies of macroid/rhodolith beds from 0 to 117m water depth in the Pacific Ocean (northern Central Ryukyu Islands, French Polynesia), eastern Australia (Fraser Island, One Tree Reef, Lizard Island), and the Mediterranean Sea (southeastern Spain) show that nodules in the beds are perforated by small-sized boring bivalve traces (Gastrochanolites). On average, boring bivalve shells (gastrochaenids and mytilids) are more slender and smaller than those living inside shallow-water rocky substrates. In the Pacific, Gastrochaena cuneiformis, Gastrochaena sp., Leiosolenus malaccanus, L. mucronatus, L. spp., and Lithophaga/Leiosolenus sp., for the first time identified below 20m water depth, occur as juvenile forms along with rare small-sized adults. In deep-water macroids and rhodoliths the boring bivalves are larger than the shallower counterparts in which growth of juveniles is probably restrained by higher overturn rates of host nodules. In general, most boring bivalves are juveniles that grew faster than the acervulinid foraminiferal and coralline red algal hosts and rarely reached the adult stage. As a consequence of phenotypic plasticity, small-sized adults with slow growth rates coexist with juveniles. Below wave base macroids and rhodoliths had the highest amounts of bioerosion, mainly produced by sponges and polychaete worms. These modern observations provide bases for paleobiological inferences in fossil occurrences.Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI) 25247083Erasmus+FAR2012-2017FIR2016FIR2018PRIN "Biotic resilience to global change: biomineralization of planktonic and benthic calcifiers in the past, present and future" 2017RX9XXXYBioMed Central-Prepay Membership at the University of FerraraJunta de Andalucía RNM 190Committee on ResearchMuseum of PaleontologyDepartment of Integrative Biology, UC BerkeleyUC Pacific Rim Projec

    Study of the plutino object (208996) 2003 AZ84 from stellar occultations: size, shape and topographic features

    Full text link
    We present results derived from four stellar occultations by the plutino object (208996) 2003~AZ84_{84}, detected at January 8, 2011 (single-chord event), February 3, 2012 (multi-chord), December 2, 2013 (single-chord) and November 15, 2014 (multi-chord). Our observations rule out an oblate spheroid solution for 2003~AZ84_{84}'s shape. Instead, assuming hydrostatic equilibrium, we find that a Jacobi triaxial solution with semi axes (470±20)×(383±10)×(245±8)(470 \pm 20) \times (383 \pm 10) \times (245 \pm 8)~km % axis ratios b/a=0.82±0.05b/a= 0.82 \pm 0.05 and c/a=0.52±0.02c/a= 0.52 \pm 0.02, can better account for all our occultation observations. Combining these dimensions with the rotation period of the body (6.75~h) and the amplitude of its rotation light curve, we derive a density ρ=0.87±0.01\rho=0.87 \pm 0.01~g~cm3^{-3} a geometric albedo pV=0.097±0.009p_V= 0.097 \pm 0.009. A grazing chord observed during the 2014 occultation reveals a topographic feature along 2003~AZ84_{84}'s limb, that can be interpreted as an abrupt chasm of width 23\sim 23~km and depth >8> 8~km or a smooth depression of width 80\sim 80~km and depth 13\sim 13~km (or an intermediate feature between those two extremes)

    Extreme Ultraviolet Second Harmonic Generation Spectroscopy in a Polar Metal

    Get PDF
    The coexistence of ferroelectricity and metallicity seems paradoxical, since the itinerant electrons in metals should screen the long-range dipole interactions necessary for dipole ordering. The recent discovery of the polar metal LiOsO3 was therefore surprising [as discussed earlier in Y. Shi et al., Nat. Mater. 2013, 12, 1024]. It is thought that the coordination preferences of the Li play a key role in stabilizing the LiOsO3 polar metal phase, but an investigation from the combined viewpoints of core-state specificity and symmetry has yet to be done. Here, we apply the novel technique of extreme ultraviolet second harmonic generation (XUV-SHG) and find a sensitivity to the broken inversion symmetry in the polar metal phase of LiOsO3 with an enhanced feature above the Li K-edge that reflects the degree of Li atom displacement as corroborated by density functional theory calculations. These results pave the way for time-resolved probing of symmetry-breaking structural phase transitions on femtosecond time scales with element specificity

    Search for the Invisible Decay of Neutrons with KamLAND

    Get PDF
    The Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) is used in a search for single neutron or two neutron intra-nuclear disappearance that would produce holes in the s\it{s}-shell energy level of 12^{12}C nuclei. Such holes could be created as a result of nucleon decay into invisible modes (invinv), e.g. n3νn \to 3\nu or nn2νnn \to 2\nu. The de-excitation of the corresponding daughter nucleus results in a sequence of space and time correlated events observable in the liquid scintillator detector. We report on new limits for one- and two-neutron disappearance: τ(ninv)>5.8×1029\tau(n\to inv)> 5.8\times 10^{29} years and τ(nninv)>1.4×1030\tau (nn \to inv)> 1.4 \times 10^{30} years at 90% CL. These results represent an improvement of factors of \sim3 and >104>10^4 over previous experiments.Comment: 5 pages, 3 figure

    Midkine is a NF-κB-inducible gene that supports prostate cancer cell survival

    Get PDF
    BackgroundMidkine is a heparin-binding growth factor that is over-expressed in various human cancers and plays important roles in cell transformation, growth, survival, migration, and angiogenesis. However, little is known about the upstream factors and signaling mechanisms that regulate midkine gene expression.MethodsTwo prostate cancer cell lines LNCaP and PC3 were studied for their expression of midkine. Induction of midkine expression in LNCaP cells by serum, growth factors and cytokines was determined by Western blot analysis and/or real-time quantitative reverse-transcription - polymerase chain reaction (RT-PCR). The cell viability was determined by the trypan blue exclusion assay when the LNCaP cells were treated with tumor necrosis factor alpha (TNFalpha) and/or recombinant midkine. When the LNCaP cells were treated with recombinant midkine, activation of intracellular signalling pathways was determined by Western blot analysis. Prostate tissue microarray slides containing 129 cases (18 normal prostate tissues, 40 early stage cancers, and 71 late stage cancers) were assessed for midkine expression by immunohistochemical staining.ResultsWe identified that fetal bovine serum, some growth factors (epidermal growth factor, androgen, insulin-like growth factor-I, and hepatocyte growth factor) and cytokines (TNFalpha and interleukin-1beta) induced midkine expression in a human prostate cancer cell line LNCaP cells. TNFalpha also induced midkine expression in PC3 cells. TNFalpha was the strongest inducer of midkine expression via nuclear factor-kappa B pathway. Midkine partially inhibited TNFalpha-induced apoptosis in LNCaP cells. Knockdown of endogenous midkine expression by small interfering RNA enhanced TNFalpha-induced apoptosis in LNCaP cells. Midkine activated extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase pathways in LNCaP cells. Furthermore, midkine expression was significantly increased in late stage prostate cancer, which coincides with previously reported high serum levels of TNFalpha in advanced prostate cancer.ConclusionThese findings provide the first demonstration that midkine expression is induced by certain growth factors and cytokines, particularly TNFalpha, which offers new insight into understanding how midkine expression is increased in the late stage prostate cancer

    Measurement of Neutrino Oscillation with KamLAND: Evidence of Spectral Distortion

    Get PDF
    We present results of a study of neutrino oscillation based on a 766 ton-year exposure of KamLAND to reactor anti-neutrinos. We observe 258 \nuebar\ candidate events with energies above 3.4 MeV compared to 365.2 events expected in the absence of neutrino oscillation. Accounting for 17.8 expected background events, the statistical significance for reactor \nuebar disappearance is 99.998%. The observed energy spectrum disagrees with the expected spectral shape in the absence of neutrino oscillation at 99.6% significance and prefers the distortion expected from \nuebar oscillation effects. A two-neutrino oscillation analysis of the KamLAND data gives \DeltaMSq = 7.90.5+0.6×105^{+0.6}_{-0.5}\times10^{-5} eV2^2. A global analysis of data from KamLAND and solar neutrino experiments yields \DeltaMSq = 7.90.5+0.6×105^{+0.6}_{-0.5}\times10^{-5} eV2^2 and \ThetaParam = 0.400.07+0.10^{+0.10}_{-0.07}, the most precise determination to date.Comment: 5 pages, 4 figures; submitted to Phys.Rev.Letter

    First Results from KamLAND: Evidence for Reactor Anti-Neutrino Disappearance

    Get PDF
    KamLAND has been used to measure the flux of νˉe\bar{\nu}_e's from distant nuclear reactors. In an exposure of 162 ton\cdotyr (145.1 days) the ratio of the number of observed inverse β\beta-decay events to the expected number of events without disappearance is 0.611±0.085(stat)±0.041(syst)0.611\pm 0.085 {\rm (stat)} \pm 0.041 {\rm (syst)} for νˉe\bar{\nu}_e energies >> 3.4 MeV. The deficit of events is inconsistent with the expected rate for standard νˉe\bar{\nu}_e propagation at the 99.95% confidence level. In the context of two-flavor neutrino oscillations with CPT invariance, these results exclude all oscillation solutions but the `Large Mixing Angle' solution to the solar neutrino problem using reactor νˉe\bar{\nu}_e sources.Comment: 6 pages, 6 figure
    corecore