1,536 research outputs found

    Fine-Structure Map of the Histidine Transport Genes in \u3cem\u3eSalmonella typhimurium\u3c/em\u3e

    Get PDF
    Afine-structure genetic map of the histidine transport region of the Salmonella typhimurium chromosome was constructed. Twenty-five deletion mutants were isolated and used for dividing the hisJ and hisP genes into 8 and 13 regions respectively. A total of 308 mutations, spontaneous and mutagen induced, have been placed in these regions by deletion mapping. The histidine transport operon is presumed to be constituted of genes dhuA, hisJ, and hisP, and the regulation of the hosP and hisJ genes by dhuA is discussed. The orientation of this operon relative to purF has been established by three-point crosses as being: purF duhA hisJ hisP

    Pterodactyl: The Development and Performance of Guidance Algorithms for a Mechanically Deployed Entry Vehicle

    Get PDF
    Pterodactyl is a NASA Space Technology Mission Directorate (STMD) project focused on developing a design capability for optimal, scalable, Guidance and Control (G&C) solutions that enable precision targeting for Deployable Entry Vehicles (DEVs). This feasibility study is unique in that it focuses on the rapid integration of targeting performance analysis with structural & packaging analysis, which is especially challenging for new vehicle and mission designs. This paper will detail the guidance development and trajectory design process for a lunar return mission, selected to stress the vehicle designs and encourage future scalability. For the five G&C configurations considered, the Fully Numerical Predictor-Corrector Entry Guidance (FNPEG) was selected for configurations requiring bank angle guidance and FNPEG with Uncoupled Range Control (URC) was developed for configurations requiring angle of attack and sideslip angle guidance. Successful G&C configurations are defined as those that can deliver payloads to the intended descent and landing initiation point, while abiding by trajectory constraints for nominal and dispersed trajectories

    Pterodactyl: Thermal Protection System for Integrated Control Design of a Mechanically Deployed Entry Vehicle

    Get PDF
    The need for precision landing of high mass payloads on Mars and the return of sensitive samples from other planetary bodies to specific locations on Earth is driving the development of an innovative NASA technology referred to as the Deployable Entry Vehicle (DEV). A DEV has the potential to deliver an equivalent science payload with a stowed diameter 3 to 4 times smaller than a traditional rigid capsule configuration. However, the DEV design does not easily lend itself to traditional methods of directional control. The NASA Space Technology Mission Directorate (STMD)s Pterodactyl project is currently investigating the effectiveness of three different Guidance and Control (G&C) systems actuated flaps, Center of Gravity (CG) or mass movement, and Reaction Control System (RCS) for use with a DEV using the Adaptable, Deployable, Entry, and Placement Technology (ADEPT) design. This paper details the Thermal Protection System (TPS) design and associated mass estimation efforts for each of the G&C systems. TPS is needed for the nose cap of the DEV and the flaps of the actuated flap control system. The development of a TPS selection, sizing, and mass estimation method designed to deal with the varying requirements for the G&C options throughout the trajectory is presented. The paper discusses the methods used to i) obtain heating environments throughout the trajectory with respect to the chosen control system and resulting geometry; ii) determine a suitable TPS material; iii) produce TPS thickness estimations; and, iv) determine the final TPS mass estimation based on TPS thickness, vehicle control system, vehicle structure, and vehicle payload

    OpenFOAM Simulations of Atmospheric-Entry Capsules in the Subsonic Regime

    Get PDF
    The open-source Computational Fluid Dynamics software OpenFOAM is gaining wider acceptance in industry and academia for incompressible flow simulations. To date, there has been relatively little utilization of OpenFOAM for compressible external aerodynamic applications. The numerous turbulence models available in OpenFOAM makes it an attractive option for evaluating alternate Reynolds-Averaged Navier-Stokes (RANS) turbulent models to assess separated flow on atmospheric entry vehicles in the subsonic regime, where traditional turbulent models show reduced accuracy. This paper presents simulations of an axisymmetric capsule geometry at subsonic conditions using an OpenFOAM compressible flow solver. These results are compared with results from the NASA CFD code OVERFLOW and experimental data. These OpenFOAM simulations serve as a basis to explore OpenFOAMs extended turbulence models on compressible separated flows such as found on entry capsules

    Evidence of Varroa-mediated Deformed Wing virus spillover in Hawaii

    Get PDF
    Varroa destructor, a parasitic mite of honey bees, is also a vector for viral diseases. The mite displays high host specificity and requires access to colonies of Apis spp. to complete its lifecycle. In contrast, the Deformed Wing Virus (DWV), one of the many viruses transmitted by V. destructor, appears to have a much broader host range. Previous studies have detected DWV in a variety of insect groups that are not directly parasitized by the mite. In this study, we take advantage of the discrete distribution of the Varroa mite in the Hawaiian archipelago to compare DWV prevalence on non-Apis flower visitors, and test whether Varroa presence is linked to a “viral spillover”. We selected two islands with different viral landscapes: Oahu, where V. destructor has been present since 2007, and Maui, where the mite is absent. We sampled individuals of Apis mellifera, Ceratina smaragdula, Polistes aurifer, and Polistes exclamens, to assess and compare the DWV prevalence in the Hymenoptera community of the two islands. The results indicated that, as expected, honey bee colonies on Oahu have much higher incidence of DWV compared to Maui. Correspondingly, DWV was detected on the Non-Apis Hymenoptera collected from Oahu, but was absent in the species examined on Maui. The study sites selected shared a similar geography, climate, and insect fauna, but differed in the presence of the Varroa mite, suggesting an indirect, but significant, increase on DWV prevalence in the Hymenoptera community on mite-infected islands

    Pterodactyl: Trade Study for an Integrated Control System Design of a Mechanically Deployable Entry Vehicle

    Get PDF
    This paper presents the trade study method used to evaluate and downselect from a set of guidance and control (G&C) system designs for a mechanically Deployable Entry Vehicle (DEV). The Pterodactyl project was prompted by the challenge to develop an effective G&C system for a vehicle without a backshell, which is the case for DEVs. For the DEV, the project assumed a specific aeroshell geometry pertaining to an Adaptable, Deployable Entry and Placement Technology (ADEPT) vehicle, which was successfully developed by NASAs Space Technology Mission Directorate (STMD) prior to this study. The Pterodactyl project designed three different entry G&C systems for precision targeting. This paper details the Figures of Merit (FOMs) and metrics used during the course of the projects G&C system assessment. The relative importance of the FOMs was determined from the Analytic Hierarchy Process (AHP), which was used to develop weights that were combined with quantitative design metrics and engineering judgement to rank the G&C systems against one another. This systematic method takes into consideration the projects input while simultaneously reducing unintentional judgement bias and ultimately was used to select a single G&C design for the project to pursue in the next design phase

    Control and Simulation of a Deployable Entry Vehicle with Aerodynamic Control Surfaces

    Get PDF
    In this paper, we investigate the static stability of a deployable entry vehicle called the Lifting Nano-ADEPT and design a control system to follow bank angle, angle-of-attack, and sideslip guidance commands. The control design, based on linear quadratic regulator optimal techniques, utilizes aerodynamic control surfaces to track angle-of-attack, sideslip angle, and bank angle commands. We demonstrate, using a nonlinear simulation environment, that the controller is able to accurately track step commands that may come from a guidance algorithm

    The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria

    Get PDF
    Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel

    Membrane Protein Function

    Get PDF

    Molecular Binding Mechanism of TtgR Repressor to Antibiotics and Antimicrobials

    Get PDF
    A disturbing phenomenon in contemporary medicine is the prevalence of multidrug-resistant pathogenic bacteria. Efflux pumps contribute strongly to this antimicrobial drug resistance, which leads to the subsequent failure of clinical treatments. The TtgR protein of Pseudomonas putida is a HTH-type transcriptional repressor that controls expression of the TtgABC efflux pump, which is the main contributor to resistance against several antimicrobials and toxic compounds in this microbe. One of the main strategies to modulate the bacterial resistance is the rational modification of the ligand binding target site. We report the design and characterization of four mutants-TtgRS77A, TtgRE78A, TtgRN110A and TtgRH114A - at the active ligand binding site. The biophysical characterization of the mutants, in the presence and in the absence of different antimicrobials, revealed that TtgRN110A is the variant with highest thermal stability, under any of the experimental conditions tested. EMSA experiments also showed a different dissociation pattern from the operator for TtgRN110A, in the presence of several antimicrobials, making it a key residue in the TtgR protein repression mechanism of the TtgABC efflux pump. We found that TtgRE78A stability is the most affected upon effector binding. We also probe that one mutation at the C-terminal half of helix-α4, TtgRS77A, provokes a severe protein structure distortion, demonstrating the important role of this residue in the overall protein structure and on the ligand binding site. The data provide new information and deepen the understanding of the TtgR-effector binding mechanism and consequently the TtgABC efflux pump regulation mechanism in Pseudomonas putida.This work was supported by Spanish Ministry of Economy and Competitiveness, National programme for Recruitment and Incorporation of Human Resources, Subprogramme: Ramon y Cajal RYC-2009-04570 and grant P11-CVI-7391 from Junta de Andalucía and EFDR (European Regional Development Fund)
    corecore