16,511 research outputs found
Modeling and inference of multisubject fMRI data
Functional magnetic resonance imaging (fMRI) is a
rapidly growing technique for studying the brain in
action. Since its creation [1], [2], cognitive scientists
have been using fMRI to understand how we remember,
manipulate, and act on information in our environment.
Working with magnetic resonance physicists, statisticians, and
engineers, these scientists are pushing the frontiers of knowledge
of how the human brain works.
The design and analysis of single-subject fMRI studies
has been well described. For example, [3], chapters 10
and 11 of [4], and chapters 11 and 14 of [5] all give accessible
overviews of fMRI methods for one subject. In contrast,
while the appropriate manner to analyze a group of
subjects has been the topic of several recent papers, we do
not feel it has been covered well in introductory texts and
review papers. Therefore, in this article, we bring together
old and new work on so-called group modeling of fMRI
data using a consistent notation to make the methods more
accessible and comparable
The pre-solicitation phase of Government R and D contracting
Decision environment during pre-solicitation phase of procurement cycle in government agency contractin
Stellar wind-magnetosphere interaction at exoplanets: computations of auroral radio powers
We present calculations of the auroral radio powers expected from exoplanets
with magnetospheres driven by an Earth-like magnetospheric interaction with the
solar wind. Specifically, we compute the twin cell-vortical ionospheric flows,
currents, and resulting radio powers resulting from a Dungey cycle process
driven by dayside and nightside magnetic reconnection, as a function of
planetary orbital distance and magnetic field strength. We include saturation
of the magnetospheric convection, as observed at the terrestrial magnetosphere,
and we present power law approximations for the convection potentials, radio
powers and spectral flux densities. We specifically consider a solar-age system
and a young (1 Gyr) system. We show that the radio power increases with
magnetic field strength for magnetospheres with saturated convection potential,
and broadly decreases with increasing orbital distance. We show that the
magnetospheric convection at hot Jupiters will be saturated, and thus unable to
dissipate the full available incident Poynting flux, such that the magnetic
Radiometric Bode's Law (RBL) presents a substantial overestimation of the radio
powers for hot Jupiters. Our radio powers for hot Jupiters are 5-1300 TW
for hot Jupiters with field strengths of 0.1-10 orbiting a Sun-like star,
while we find that competing effects yield essentially identical powers for hot
Jupiters orbiting a young Sun-like star. However, in particular for planets
with weaker magnetic fields our powers are higher at larger orbital distances
than given by the RBL, and there are many configurations of planet that are
expected to be detectable using SKA.Comment: Accepted for publication in Mon. Not. R. Astron. So
Towards a geometrical interpretation of quantum information compression
Let S be the von Neumann entropy of a finite ensemble E of pure quantum
states. We show that S may be naturally viewed as a function of a set of
geometrical volumes in Hilbert space defined by the states and that S is
monotonically increasing in each of these variables. Since S is the Schumacher
compression limit of E, this monotonicity property suggests a geometrical
interpretation of the quantum redundancy involved in the compression process.
It provides clarification of previous work in which it was shown that S may be
increased while increasing the overlap of each pair of states in the ensemble.
As a byproduct, our mathematical techniques also provide a new interpretation
of the subentropy of E.Comment: 11 pages, latex2
Cluster Failure Revisited: Impact of First Level Design and Data Quality on Cluster False Positive Rates
Methodological research rarely generates a broad interest, yet our work on
the validity of cluster inference methods for functional magnetic resonance
imaging (fMRI) created intense discussion on both the minutia of our approach
and its implications for the discipline. In the present work, we take on
various critiques of our work and further explore the limitations of our
original work. We address issues about the particular event-related designs we
used, considering multiple event types and randomisation of events between
subjects. We consider the lack of validity found with one-sample permutation
(sign flipping) tests, investigating a number of approaches to improve the
false positive control of this widely used procedure. We found that the
combination of a two-sided test and cleaning the data using ICA FIX resulted in
nominal false positive rates for all datasets, meaning that data cleaning is
not only important for resting state fMRI, but also for task fMRI. Finally, we
discuss the implications of our work on the fMRI literature as a whole,
estimating that at least 10% of the fMRI studies have used the most problematic
cluster inference method (P = 0.01 cluster defining threshold), and how
individual studies can be interpreted in light of our findings. These
additional results underscore our original conclusions, on the importance of
data sharing and thorough evaluation of statistical methods on realistic null
data
Reply to Chen et al.: Parametric methods for cluster inference perform worse for two-sided t-tests
One-sided t-tests are commonly used in the neuroimaging field, but two-sided
tests should be the default unless a researcher has a strong reason for using a
one-sided test. Here we extend our previous work on cluster false positive
rates, which used one-sided tests, to two-sided tests. Briefly, we found that
parametric methods perform worse for two-sided t-tests, and that non-parametric
methods perform equally well for one-sided and two-sided tests
NAIP/NLRC4 inflammasome activation in MRP8+ cells is sufficient to cause systemic inflammatory disease.
Inflammasomes are cytosolic multiprotein complexes that initiate protective immunity in response to infection, and can also drive auto-inflammatory diseases, but the cell types and signalling pathways that cause these diseases remain poorly understood. Inflammasomes are broadly expressed in haematopoietic and non-haematopoietic cells and can trigger numerous downstream responses including production of IL-1β, IL-18, eicosanoids and pyroptotic cell death. Here we show a mouse model with endogenous NLRC4 inflammasome activation in Lysozyme2 + cells (monocytes, macrophages and neutrophils) in vivo exhibits a severe systemic inflammatory disease, reminiscent of human patients that carry mutant auto-active NLRC4 alleles. Interestingly, specific NLRC4 activation in Mrp8 + cells (primarily neutrophil lineage) is sufficient to cause severe inflammatory disease. Disease is ameliorated on an Asc -/- background, and can be suppressed by injections of anti-IL-1 receptor antibody. Our results provide insight into the mechanisms by which NLRC4 inflammasome activation mediates auto-inflammatory disease in vivo
Estimates of body sizes at maturation and at sex change, and the spawning seasonality and sex ratio of the endemic Hawaiian grouper (Hyporthodus quernus, F. Epinephelidae)
A case study of the reproductive biology of the endemic Hawaiian grouper or hapu’upu’u (Hyporthodus quernus) is presented as a model for comprehensive future studies of
economically important epinephelid groupers. Specimens were collected throughout multiple years (1978–81, 1992–93, and 2005–08) from most reefs and banks of the Northwestern
Hawaiian Islands. The absence of small males, presence of atretic oocytes and brown bodies in testes of mature males, and both developed ovarian and testicular tissues in the gonads of five transitional fish provided evidence of protogynous hermaphroditism. No small mature males were collected, indicating that Hawaiian grouper are monandrous
(all males are sex-changed females). Complementary microscopic criteria also were used to assign reproductive
stage and estimate median body sizes (L50) at female sexual maturity and at adult sex change from female to male. The L50 at maturation and at sex change was 580 ±8 (95% confidence interval [CI]) mm total length (TL) and 895 ±20 mm TL, respectively. The adult sex ratio was strongly female
biased (6:1). Spawning seasonality was described by using gonadosomatic indices. Females began ripening in the fall and remained ripe through April. A February–June main spawning period that followed peak ripening was deduced from the proportion of females whose ovaries contained hydrated oocytes, postovulatory follicles, or both. Testes
weights were not affected by season; average testes weight was only about 0.2% of body weight—an order of magnitude smaller than that for ovaries that peaked at 1–3% of body
weight. The species’ reproductive life history is discussed in relation to its management
Low NO(x) heavy fuel combustor program
The 'low nitrogen oxides heavy fuel combustor' program is described. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen, improved combustor durability, and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines
- …