16,511 research outputs found

    Modeling and inference of multisubject fMRI data

    Get PDF
    Functional magnetic resonance imaging (fMRI) is a rapidly growing technique for studying the brain in action. Since its creation [1], [2], cognitive scientists have been using fMRI to understand how we remember, manipulate, and act on information in our environment. Working with magnetic resonance physicists, statisticians, and engineers, these scientists are pushing the frontiers of knowledge of how the human brain works. The design and analysis of single-subject fMRI studies has been well described. For example, [3], chapters 10 and 11 of [4], and chapters 11 and 14 of [5] all give accessible overviews of fMRI methods for one subject. In contrast, while the appropriate manner to analyze a group of subjects has been the topic of several recent papers, we do not feel it has been covered well in introductory texts and review papers. Therefore, in this article, we bring together old and new work on so-called group modeling of fMRI data using a consistent notation to make the methods more accessible and comparable

    The pre-solicitation phase of Government R and D contracting

    Get PDF
    Decision environment during pre-solicitation phase of procurement cycle in government agency contractin

    Stellar wind-magnetosphere interaction at exoplanets: computations of auroral radio powers

    Full text link
    We present calculations of the auroral radio powers expected from exoplanets with magnetospheres driven by an Earth-like magnetospheric interaction with the solar wind. Specifically, we compute the twin cell-vortical ionospheric flows, currents, and resulting radio powers resulting from a Dungey cycle process driven by dayside and nightside magnetic reconnection, as a function of planetary orbital distance and magnetic field strength. We include saturation of the magnetospheric convection, as observed at the terrestrial magnetosphere, and we present power law approximations for the convection potentials, radio powers and spectral flux densities. We specifically consider a solar-age system and a young (1 Gyr) system. We show that the radio power increases with magnetic field strength for magnetospheres with saturated convection potential, and broadly decreases with increasing orbital distance. We show that the magnetospheric convection at hot Jupiters will be saturated, and thus unable to dissipate the full available incident Poynting flux, such that the magnetic Radiometric Bode's Law (RBL) presents a substantial overestimation of the radio powers for hot Jupiters. Our radio powers for hot Jupiters are \sim5-1300 TW for hot Jupiters with field strengths of 0.1-10 BJB_J orbiting a Sun-like star, while we find that competing effects yield essentially identical powers for hot Jupiters orbiting a young Sun-like star. However, in particular for planets with weaker magnetic fields our powers are higher at larger orbital distances than given by the RBL, and there are many configurations of planet that are expected to be detectable using SKA.Comment: Accepted for publication in Mon. Not. R. Astron. So

    Towards a geometrical interpretation of quantum information compression

    Full text link
    Let S be the von Neumann entropy of a finite ensemble E of pure quantum states. We show that S may be naturally viewed as a function of a set of geometrical volumes in Hilbert space defined by the states and that S is monotonically increasing in each of these variables. Since S is the Schumacher compression limit of E, this monotonicity property suggests a geometrical interpretation of the quantum redundancy involved in the compression process. It provides clarification of previous work in which it was shown that S may be increased while increasing the overlap of each pair of states in the ensemble. As a byproduct, our mathematical techniques also provide a new interpretation of the subentropy of E.Comment: 11 pages, latex2

    Cluster Failure Revisited: Impact of First Level Design and Data Quality on Cluster False Positive Rates

    Full text link
    Methodological research rarely generates a broad interest, yet our work on the validity of cluster inference methods for functional magnetic resonance imaging (fMRI) created intense discussion on both the minutia of our approach and its implications for the discipline. In the present work, we take on various critiques of our work and further explore the limitations of our original work. We address issues about the particular event-related designs we used, considering multiple event types and randomisation of events between subjects. We consider the lack of validity found with one-sample permutation (sign flipping) tests, investigating a number of approaches to improve the false positive control of this widely used procedure. We found that the combination of a two-sided test and cleaning the data using ICA FIX resulted in nominal false positive rates for all datasets, meaning that data cleaning is not only important for resting state fMRI, but also for task fMRI. Finally, we discuss the implications of our work on the fMRI literature as a whole, estimating that at least 10% of the fMRI studies have used the most problematic cluster inference method (P = 0.01 cluster defining threshold), and how individual studies can be interpreted in light of our findings. These additional results underscore our original conclusions, on the importance of data sharing and thorough evaluation of statistical methods on realistic null data

    Reply to Chen et al.: Parametric methods for cluster inference perform worse for two-sided t-tests

    Full text link
    One-sided t-tests are commonly used in the neuroimaging field, but two-sided tests should be the default unless a researcher has a strong reason for using a one-sided test. Here we extend our previous work on cluster false positive rates, which used one-sided tests, to two-sided tests. Briefly, we found that parametric methods perform worse for two-sided t-tests, and that non-parametric methods perform equally well for one-sided and two-sided tests

    NAIP/NLRC4 inflammasome activation in MRP8+ cells is sufficient to cause systemic inflammatory disease.

    Get PDF
    Inflammasomes are cytosolic multiprotein complexes that initiate protective immunity in response to infection, and can also drive auto-inflammatory diseases, but the cell types and signalling pathways that cause these diseases remain poorly understood. Inflammasomes are broadly expressed in haematopoietic and non-haematopoietic cells and can trigger numerous downstream responses including production of IL-1β, IL-18, eicosanoids and pyroptotic cell death. Here we show a mouse model with endogenous NLRC4 inflammasome activation in Lysozyme2 + cells (monocytes, macrophages and neutrophils) in vivo exhibits a severe systemic inflammatory disease, reminiscent of human patients that carry mutant auto-active NLRC4 alleles. Interestingly, specific NLRC4 activation in Mrp8 + cells (primarily neutrophil lineage) is sufficient to cause severe inflammatory disease. Disease is ameliorated on an Asc -/- background, and can be suppressed by injections of anti-IL-1 receptor antibody. Our results provide insight into the mechanisms by which NLRC4 inflammasome activation mediates auto-inflammatory disease in vivo

    Estimates of body sizes at maturation and at sex change, and the spawning seasonality and sex ratio of the endemic Hawaiian grouper (Hyporthodus quernus, F. Epinephelidae)

    Get PDF
    A case study of the reproductive biology of the endemic Hawaiian grouper or hapu’upu’u (Hyporthodus quernus) is presented as a model for comprehensive future studies of economically important epinephelid groupers. Specimens were collected throughout multiple years (1978–81, 1992–93, and 2005–08) from most reefs and banks of the Northwestern Hawaiian Islands. The absence of small males, presence of atretic oocytes and brown bodies in testes of mature males, and both developed ovarian and testicular tissues in the gonads of five transitional fish provided evidence of protogynous hermaphroditism. No small mature males were collected, indicating that Hawaiian grouper are monandrous (all males are sex-changed females). Complementary microscopic criteria also were used to assign reproductive stage and estimate median body sizes (L50) at female sexual maturity and at adult sex change from female to male. The L50 at maturation and at sex change was 580 ±8 (95% confidence interval [CI]) mm total length (TL) and 895 ±20 mm TL, respectively. The adult sex ratio was strongly female biased (6:1). Spawning seasonality was described by using gonadosomatic indices. Females began ripening in the fall and remained ripe through April. A February–June main spawning period that followed peak ripening was deduced from the proportion of females whose ovaries contained hydrated oocytes, postovulatory follicles, or both. Testes weights were not affected by season; average testes weight was only about 0.2% of body weight—an order of magnitude smaller than that for ovaries that peaked at 1–3% of body weight. The species’ reproductive life history is discussed in relation to its management

    Low NO(x) heavy fuel combustor program

    Get PDF
    The 'low nitrogen oxides heavy fuel combustor' program is described. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen, improved combustor durability, and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines
    corecore