25 research outputs found

    Observations of the pulsating subdwarf B star Feige 48: Constraints on evolution and companions

    Get PDF
    Since pulsating subdwarf B (sdBV or EC14026) stars were first discovered (Kilkenny et al, 1997), observational efforts have tried to realize their potential for constraining the interior physics of extreme horizontal branch (EHB) stars. Difficulties encountered along the way include uncertain mode identifications and a lack of stable pulsation mode properties. Here we report on Feige 48, an sdBV star for which follow-up observations have been obtained spanning more than four years, which shows some stable pulsation modes. We resolve the temporal spectrum into five stable pulsation periods in the range 340 to 380 seconds with amplitudes less than 1%, and two additional periods that appear in one dataset each. The three largest amplitude periodicities are nearly equally spaced, and we explore the consequences of identifying them as a rotationally split l=1 triplet by consulting with a representative stellar model. The general stability of the pulsation amplitudes and phases allows us to use the pulsation phases to constrain the timescale of evolution for this sdBV star. Additionally, we are able to place interesting limits on any stellar or planetary companion to Feige 48.Comment: accepted for publication in MNRA

    Understanding the Cool DA White Dwarf, G29-38

    Full text link
    The white dwarfs are promising laboratories for the study of cosmochronology and stellar evolution. Through observations of the pulsating white dwarfs, we can measure their internal structures and compositions, critical to understanding post main sequence evolution, along with their cooling rates, allowing us to calibrate their ages directly. The most important set of white dwarf variables to measure are the oldest of the pulsators, the cool DAVs, which have not previously been explored through asteroseismology due to their complexity and instability. Through a time-series photometry data set spanning ten years, we explore the pulsation spectrum of the cool DAV, G29-38 and find an underlying structure of 19 (not including multiplet components) normal-mode, probably l=1 pulsations amidst an abundance of time variability and linear combination modes. Modelling results are incomplete, but we suggest possible starting directions and discuss probable values for the stellar mass and hydrogen layer size. For the first time, we have made sense out of the complicated power spectra of a large-amplitude DA pulsator. We have shown its seemingly erratic set of observed frequencies can be understood in terms of a recurring set of normal-mode pulsations and their linear combinations. With this result, we have opened the interior secrets of the DAVs to future asteroseismological modelling, thereby joining the rest of the known white dwarf pulsators.Comment: 29 pages including 5 figures To appear in ApJ 1 Mar 9

    Whole Earth Telescope observations of BPM 37093: a seismological test of crystallization theory in white dwarfs

    Get PDF
    BPM 37093 is the only hydrogen-atmosphere white dwarf currently known which has sufficient mass (~ 1.1 M_sun) to theoretically crystallize while still inside the ZZ Ceti instability strip (T_eff ~ 12,000 K). As a consequence, this star represents our first opportunity to test crystallization theory directly. If the core is substantially crystallized, then the inner boundary for each pulsation mode will be located at the top of the solid core rather than at the center of the star, affecting mainly the average period spacing. This is distinct from the "mode trapping" caused by the stratified surface layers, which modifies the pulsation periods more selectively. In this paper we report on Whole Earth Telescope observations of BPM 37093 obtained in 1998 and 1999. Based on a simple analysis of the average period spacing we conclude that a large fraction of the total stellar mass is likely to be crystallized.Comment: 7 pages, 3 figures, 3 tables, accepted for Astronomy & Astrophysic

    Introduction

    No full text

    One more modernization of the Pancake photometer

    No full text

    The Whole Earth Telescope Arrives to Lithuania

    No full text
    A short description of participation of the Lithuanian astronomers in the Whole Earth Telescope program is given

    The temporal spectrum of the sdB pulsating star HS 2201+2610 at 2 ms resolution

    No full text
    In this article we present the results of more than 180 hours of time-series photometry on the low gravity (logg=5.4\log g=5.4, Teff=29T_{\rm eff}=29 300 K, logHe/H=3.0\log {\rm He/H}=-3.0 by number) sdB pulsating star HS 2201+2610, obtained between September 2000 and August 2001. The temporal spectrum is resolved and shows 5 close frequencies: three main signals at 2860.94, 2824.10 and 2880.69 μHz, with amplitudes of about 1%, 0.5% and 0.1% respectively, are detected from single run observations; two further peaks with very low amplitude (<0.07%) at 2738.01 and 2921.82 μHz are confirmed by phase analysis on several independent runs. Due to the small number of detected frequencies, it is not possible to obtain a univocal identification of the excited modes and perform a detailed seismological analysis of the star. No clear signatures of rotational splitting are seen. Nevertheless, the observed period spectrum is well inside the excited period window obtained from pulsation calculations with nonadiabatic models having effective temperature and surface gravity close to the spectroscopic estimates. Due to its relatively simple temporal spectrum, HS 2201+2610 is a very good candidate for trying to measure the secular variation of the pulsation periods in time. With this purpose a long-term monitoring of the star was started. The results of the first 11 months show amplitude variations up to ~20% on time-scales of months, which are probably real, and allow us to measure the pulsation frequencies with an unprecedented 0.02 μHz resolution
    corecore