291 research outputs found

    A comparison of the response of PADC neutron dosemeters in high-energy neutron fields

    Get PDF
    Within the framework of the EURADOS Working Group 11, a comparison of passive neutron dosemeters in high-energy neutron fields was organised in 2011. The aim of the exercise was to evaluate the response of poly-allyl-glycol-carbonate neutron dosemeters from various European dosimetry laboratories to high-energy neutron fields. Irradiations were performed at the iThemba LABS facility in South Africa with neutrons having energies up to 66 and 100 Me

    First radial velocity results from the MINiature Exoplanet Radial Velocity Array (MINERVA)

    Full text link
    The MINiature Exoplanet Radial Velocity Array (MINERVA) is a dedicated observatory of four 0.7m robotic telescopes fiber-fed to a KiwiSpec spectrograph. The MINERVA mission is to discover super-Earths in the habitable zones of nearby stars. This can be accomplished with MINERVA's unique combination of high precision and high cadence over long time periods. In this work, we detail changes to the MINERVA facility that have occurred since our previous paper. We then describe MINERVA's robotic control software, the process by which we perform 1D spectral extraction, and our forward modeling Doppler pipeline. In the process of improving our forward modeling procedure, we found that our spectrograph's intrinsic instrumental profile is stable for at least nine months. Because of that, we characterized our instrumental profile with a time-independent, cubic spline function based on the profile in the cross dispersion direction, with which we achieved a radial velocity precision similar to using a conventional "sum-of-Gaussians" instrumental profile: 1.8 m s−1^{-1} over 1.5 months on the RV standard star HD 122064. Therefore, we conclude that the instrumental profile need not be perfectly accurate as long as it is stable. In addition, we observed 51 Peg and our results are consistent with the literature, confirming our spectrograph and Doppler pipeline are producing accurate and precise radial velocities.Comment: 22 pages, 9 figures, submitted to PASP, Peer-Reviewed and Accepte

    TOI-431/HIP 26013: A super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet

    Get PDF
    We present the bright (Vmag = 9.12), multiplanet system TOI-431, characterized with photometry and radial velocities (RVs). We estimate the stellar rotation period to be 30.5 ± 0.7 d using archival photometry and RVs. Transiting Exoplanet Survey Satellite (TESS) objects of Interest (TOI)-431 b is a super-Earth with a period of 0.49 d, a radius of 1.28 ± 0.04 R, a mass of 3.07 ± 0.35 M, and a density of 8.0 ± 1.0 g cm-3; TOI-431 d is a sub-Neptune with a period of 12.46 d, a radius of 3.29 ± 0.09 R, a mass of 9.90+1.53-1.49 M, and a density of 1.36 ± 0.25 g cm-3. We find a third planet, TOI-431 c, in the High Accuracy Radial velocity Planet Searcher RV data, but it is not seen to transit in the TESS light curves. It has an Msin i of 2.83+0.41-0.34 M, and a period of 4.85 d. TOI-431 d likely has an extended atmosphere and is one of the most well-suited TESS discoveries for atmospheric characterization, while the super-Earth TOI-431 b may be a stripped core. These planets straddle the radius gap, presenting an interesting case-study for atmospheric evolution, and TOI-431 b is a prime TESS discovery for the study of rocky planet phase curves.Fil: Osborn, Ares. University of Warwick; Reino UnidoFil: Armstrong, David J. University of Warwick; Reino UnidoFil: Cale, Bryson. George Mason University; Estados UnidosFil: Brahm, Rafael. Universidad Adolfo Ibañez; Chile. Instituto de Astrofísica; ChileFil: Wittenmyer, Robert A. University Of Southern Queensland; AustraliaFil: Dai, Fei. Division Of Geological And Planetary Sciences; Estados UnidosFil: Crossfield, Ian J. M. University of Kansas; Estados UnidosFil: Bryant, Edward M. University of Warwick; Reino UnidoFil: Adibekyan, Vardan. Universidad de Porto; PortugalFil: Cloutier, Ryan. Harvard-Smithsonian Center for Astrophysics; Estados UnidosFil: Collins, Karen A. Harvard-Smithsonian Center for Astrophysics; Estados UnidosFil: Delgado Mena, E.. Universidad de Porto; PortugalFil: Fridlund, Malcolm. Leiden University; Países Bajos. Chalmers University of Technology; SueciaFil: Hellier, Coel. Keele University; Reino UnidoFil: Howell, Steve B. NASA Ames Research Center; Estados UnidosFil: King, George W. University of Warwick; Reino UnidoFil: Lillo Box, Jorge. Consejo Superior de Investigaciones Científicas. Centro de Astrobiología; EspañaFil: Otegi, Jon. Universidad de Ginebra; Suiza. Universitat Zurich; SuizaFil: Sousa, S.. Universidad de Porto; PortugalFil: Stassun, Keivan G. Vanderbilt University; Estados UnidosFil: Matthews, Elisabeth C. Universidad de Ginebra; Suiza. Massachusetts Institute of Technology; Estados UnidosFil: Ziegler, Carl. University of Toronto; CanadåFil: Ricker, George. Massachusetts Institute of Technology; Estados UnidosFil: Vanderspek, Roland. Massachusetts Institute of Technology; Estados UnidosFil: Latham, David W. Harvard-Smithsonian Center for Astrophysics; Estados UnidosFil: Seager, S.. Massachusetts Institute of Technology; Estados UnidosFil: Winn, Joshua N.. University of Princeton; Estados UnidosFil: Jenkins, Jon M. NASA Ames Research Center; Estados UnidosFil: Acton, Jack S. University of Leicester; Reino UnidoFil: Addison, Brett C. University Of Southern Queensland; AustraliaFil: Diaz, Rodrigo Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentin

    TOI-1416: A system with a super-Earth planet with a 1.07d period

    Get PDF
    TOI 1416 (BD+42 2504, HIP 70705) is a V=10 late G or early K-type dwarf star with transits detected by TESS. Radial velocities verify the presence of the transiting planet TOI-1416 b, with a period of 1.07d, a mass of 3.48MEarth3.48 M_{Earth} and a radius of 1.62REarth1.62 R_{Earth}, implying a slightly sub-Earth density of 4.504.50 g cm−3^{-3}. The RV data also further indicate a tentative planet c with a period of 27.4 or 29.5 days, whose nature cannot be verified due to strong suspicions about contamination by a signal related to the Moon's synodic period of 29.53 days. The near-USP (Ultra Short Period) planet TOI-1416 b is a typical representative of a short-period and hot (Teq≈T_{eq} \approx 1570 K) super-Earth like planet. A planet model of an interior of molten magma containing a significant fraction of dissolved water provides a plausible explanation for its composition, and its atmosphere could be suitable for transmission spectroscopy with JWST. The position of TOI-1416 b within the radius-period distribution corroborates that USPs with periods of less than one day do not form any special group of planets. Rather, this implies that USPs belong to a continuous distribution of super-Earth like planets with periods ranging from the shortest known ones up to ~ 30 days, whose period-radius distribution is delimitated against larger radii by the Neptune desert and by the period-radius valley that separates super-Earths from sub-Neptune planets. In the abundance of small-short periodic planets against period, a plateau between periods of 0.6 to 1.4 days has however become notable that is compatible with the low-eccentricity formation channel. For the Neptune desert, its lower limits required a revision due to the increasing population of short period planets and new limits are provided. These limits are also given in terms of the planets' insolation and effective temperatures.Comment: 31 pages, 31 figures, 8 tables, accepted for publication in A&

    MicroRNA-22 and promoter motif polymorphisms at the Chga locus in genetic hypertension: functional and therapeutic implications for gene expression and the pathogenesis of hypertension

    Get PDF
    Hypertension is a common hereditary syndrome with unclear pathogenesis. Chromogranin A (Chga), which catalyzes formation and cargo storage of regulated secretory granules in neuroendocrine cells, contributes to blood pressure homeostasis centrally and peripherally. Elevated Chga occurs in spontaneously hypertensive rat (SHR) adrenal glands and plasma, but central expression is unexplored. In this report, we measured SHR and Wistar–Kyoto rat (control) Chga expression in central and peripheral nervous systems, and found Chga protein to be decreased in the SHR brainstem, yet increased in the adrenal and the plasma. By re-sequencing, we systematically identified five promoter, two coding and one 3â€Č-untranslated region (3â€Č-UTR) polymorphism at the SHR (versus WKY or BN) Chga locus. Using HXB/BXH recombinant inbred (RI) strain linkage and correlations, we demonstrated genetic determination of Chga expression in SHR, including a cis-quantitative trait loci (QTLs) (i.e. at the Chga locus), and such expression influenced biochemical determinants of blood pressure, including a cascade of catecholamine biosynthetic enzymes, catecholamines themselves and steroids. Luciferase reporter assays demonstrated that the 3â€Č-UTR polymorphism (which disrupts a microRNA miR-22 motif) and promoter polymorphisms altered gene expression consistent with the decline in SHR central Chga expression. Coding region polymorphisms did not account for changes in Chga expression or function. Thus, we hypothesized that the 3â€Č-UTR and promoter mutations lead to dysregulation (diminution) of Chga in brainstem cardiovascular control nuclei, ultimately contributing to the pathogenesis of hypertension in SHR. Accordingly, we demonstrated that in vivo administration of miR-22 antagomir to SHR causes substantial (∌18 mmHg) reductions in blood pressure, opening a novel therapeutic avenue for hypertension

    Cyr61/CCN1 Displays High-Affinity Binding to the Somatomedin B 1–44 Domain of Vitronectin

    Get PDF
    OV) family of extracellular-associated (matricellular) proteins that present four distinct functional modules, namely insulin-like growth factor binding protein (IGFBP), von Willebrand factor type C (vWF), thrombospondin type 1 (TSP), and C-terminal growth factor cysteine knot (CT) domain. While heparin sulphate proteoglycans reportedly mediate the interaction of Cyr61 with the matrix and cell surface, the role of other extracellular associated proteins has not been revealed. at high concentrations attenuate Cyr61 binding to immobilized VTNC, while monomeric VTNC was ineffective. Therefore, immobilization of VTNC exposes cryptic epitopes that recognize Cyr61 with high affinity, as reported for a number of antibodies, ÎČ-endorphin, and other molecules. domain suggests that VTNC represent a point of anchorage for CCN family members to the matrix. Results are discussed in the context of the role of CCN and VTNC in matrix biology and angiogenesis

    TOI-1416: A system with a super-Earth planet with a 1.07 d period

    Get PDF
    TOI-1416 (BD+42 2504, HIP 70705) is a V =10 late G- or early K-type dwarf star. TESS detected transits in its Sectors 16, 23, and 50 with a depth of about 455 ppm and a period of 1.07 days. Radial velocities (RVs) confirm the presence of the transiting planet TOI-1416 b, which has a mass of 3.48 ± 0.47 M‱ and a radius of 1.62 ± 0.08 R‱, implying a slightly sub-Earth density of 4.500.83+0.99 g cm3. The RV data also further indicate a tentative planet, c, with a period of 27.4 or 29.5 days, whose nature cannot be verified due to strong suspicions of contamination by a signal related to the Moon s synodic period of 29.53 days. The nearly ultra-short-period planet TOI-1416 b is a typical representative of a short-period and hot (Teq ≈ 1570 K) super-Earth-like planet. A planet model of an interior of molten magma containing a significant fraction of dissolved water provides a plausible explanation for its composition, and its atmosphere could be suitable for transmission spectroscopy with JWST. The position of TOI-1416 b within the radius-period distribution corroborates the idea that planets with periods of less than one day do not form any special group. It instead implies that ultra-short-period planets belong to a continuous distribution of super-Earth-like planets with periods ranging from the shortest known ones up to ≈ 30 days; their period-radius distribution is delimited against larger radii by the Neptune Desert and by the period-radius valley that separates super-Earths from sub-Neptune planets. In the abundance of small, short-periodic planets, a notable plateau has emerged between periods of 0.6- 1.4 days, which is compatible with the low-eccentricity formation channel. For the Neptune Desert, its lower limits required a revision due to the increasing population of short-period planets; for periods shorter then 2 days, we establish a radius of 1.6 R‱ and a mass of 0.028 Mjup (corresponding to 8.9 M‱) as the desert s lower limits. We also provide corresponding limits to the Neptune Desert against the planets insolation and effective temperatures
    • 

    corecore