414 research outputs found

    Low-energy limit of the radiative dipole strength in nuclei

    Get PDF

    Spectroscopy of the heaviest nuclei (theory)

    Full text link
    Recent progress in the applications of covariant density functional theory (CDFT) to the description of the spectroscopy of the heaviest nuclei is reviewed. The analysis of quasiparticle spectra in actinides and the heaviest A ~ 250 nuclei provides a measure of the accuracy of the description of single-particle energies in CDFT and an additional constraint for the choice of effective interactions for the description of superheavy nuclei. The response of these nuclei to the rotation is rather well described by cranked relativistic Hartree+Bogoliubov theory and it serves as a supplementary tool in configuration assignment in odd-mass nuclei. A systematic analysis of the fission barriers with allowance for triaxial deformation shows that covariant density functional theory is able to describe fission barriers on a level of accuracy comparable with the best phenomenological macroscopic+microscopic approaches.Comment: 10 pages, 7 figures, invited talk of A.V. Afanasjev at the International Nuclear Physics Conference (INPC 2010), Vancouver, Canada, July 4-9, 2010, to be published in Journal of Physics G: Conference Series (JPCS

    Relativistic RPA plus phonon-coupling analysis of pygmy dipole resonances

    Get PDF
    The relativistic random-phase approximation (RRPA) plus phonon-coupling (PC) model is applied in the analysis of E1 strength distributions in 208^{208}Pb and 132^{132}Sn, for which data on pygmy dipole resonances (PDR) have recently been reported. The covariant response theory is fully consistent: the effective nuclear interaction NL3 is used both to determine the spectrum of single-nucleon Dirac states, and as the residual interaction which determines the collective phonon states in the relativistic RPA. It is shown that the picture of the PDR as a resonant oscillation of the neutron skin against the isospin saturated proton-neutron core, and with the corresponding RRPA state characterized by a coherent superposition of many neutron particle-hole configurations, remains essentially unchanged when particle-vibration coupling is included. The effect of two-phonon admixtures is a weak fragmentation and a small shift of PDR states to lower excitation energy. Even though the PDR calculated in the extended model space of ph⊗ph \otimesphonon configurations contains sizeable two-phonon admixtures, it basically retains a one-phonon character and its dynamics is not modified by the coupling to low-lying surface vibrations.Comment: 17 pages, 3 figures, 4 table

    Relativistic quasiparticle time blocking approximation. II. Pygmy dipole resonance in neutron-rich nuclei

    Full text link
    Theoretical studies of low-lying dipole strength in even-even spherical nuclei within the relativistic quasiparticle time blocking approximation (RQTBA) are presented. The RQTBA developed recently as an extension of the self-consistent relativistic quasiparticle random phase approximation (RQRPA) enables one to investigate effects of coupling of two-quasiparticle excitations to collective vibrations within a fully consistent calculation scheme based on covariant energy density functional theory. Dipole spectra of even-even 130^{130}Sn -- 140^{140}Sn and 68^{68}Ni -- 78^{78}Ni isotopes calculated within both RQRPA and RQTBA show two well separated collective structures: the higher-lying giant dipole resonance (GDR) and the lower-lying pygmy dipole resonance (PDR) which can be identified by a different behavior of the transition densities of states in these regions.Comment: 28 pages, 13 figure

    Observed and Physical Properties of Core-Collapse Supernovae

    Get PDF
    I use photometry and spectroscopy data for 24 Type II plateau supernovae to examine their observed and physical properties. This dataset shows that these objects encompass a wide range of ~5 mag in their plateau luminosities, their expansion velocities vary by x5, and the nickel masses produced in these explosions go from 0.0016 to 0.26 Mo. From a subset of 16 objects I find that the explosion energies vary between 0.6x and 5.5x10^51 ergs, the ejected masses encompass the range 14-56 Mo, and the progenitors' radii go from 80 to 600 Ro. Despite this great diversity several regularities emerge, which reveal that there is a continuum in the properties of these objects from the faint, low-energy, nickel-poor SNe 1997D and 1999br, to the bright, high-energy, nickel-rich SN 1992am. This study provides evidence that more massive progenitors produce more energetic explosions, thus suggesting that the outcome of the core collapse is somewhat determined by the envelope mass. I find also that supernovae with greater energies produce more nickel. Similar relationships appear to hold for Type Ib/c supernovae, which suggests that both Type II and Type Ib/c supernovae share the same core physics. When the whole sample of core collapse objects is considered, there is a continous distribution of energies below 8x10^51 ergs. Far above in energy scale and nickel production lies the extreme hypernova 1998bw, the only supernova firmly associated to a GRB.Comment: 25 pages, 7 figures, accepted for Part 1 of Astrophysical Journa

    Microscopic description of the pygmy and giant electric dipole resonances in stable Ca isotopes

    Full text link
    The properties of the pygmy (PDR) and giant dipole resonance (GDR)in the stable 40Ca^{40}Ca,44Ca^{44}Ca and 48Ca^{48}Ca isotopes have been calculated within the \emph{Extended Theory of Finite Fermi Systems}(ETFFS). This approach is based on the random phase approximation (RPA) and includes the single particle continuum as well as the coupling to low-lying collectives states which are considered in a consistent microscopic way. For 44Ca^{44}Ca we also include pairing correlations. We obtain good agreement with the experimental data for the gross properties of both resonances. It is demonstrated that the recently measured A-dependence of the strength of the PDR below 10 MeV is well understood in our model:due to the phonon coupling some of the strength in 48Ca^{48}Ca is simply shifted beyond 10 MeV. The predicted fragmentation of the PDR can be investigated in (e,e′)(e,e') and (γ,γ′)(\gamma ,\gamma') experiments. Whereas the isovector dipole strength of the PDR is small in all Ca isotopes, we find in this region surprisingly strong isoscalar dipole states, in agreement with an (α,α′γ)(\alpha,\alpha'\gamma) experiment. We conclude that for the detailed understanding of the structure of excited nuclei e.g. the PDR and GDR an approach like the present one is absolutely necessary.Comment: 6 figure

    Low-lying dipole response in the Relativistic Quasiparticle Time Blocking Approximation and its influence on neutron capture cross sections

    Get PDF
    We have computed dipole strength distributions for nickel and tin isotopes within the Relativistic Quasiparticle Time Blocking approximation (RQTBA). These calculations provide a good description of data, including the neutron-rich tin isotopes 130,132^{130,132}Sn. The resulting dipole strengths have been implemented in Hauser-Feshbach calculations of astrophysical neutron capture rates relevant for r-process nucleosynthesis studies. The RQTBA calculations show the presence of enhanced dipole strength at energies around the neutron threshold for neutron rich nuclei. The computed neutron capture rates are sensitive to the fine structure of the low lying dipole strength, which emphasizes the importance of a reliable knowledge of this excitation mode.Comment: 15 pages, 4 figures, Accepted in Nucl. Phys.
    • …
    corecore