research

Relativistic quasiparticle time blocking approximation. II. Pygmy dipole resonance in neutron-rich nuclei

Abstract

Theoretical studies of low-lying dipole strength in even-even spherical nuclei within the relativistic quasiparticle time blocking approximation (RQTBA) are presented. The RQTBA developed recently as an extension of the self-consistent relativistic quasiparticle random phase approximation (RQRPA) enables one to investigate effects of coupling of two-quasiparticle excitations to collective vibrations within a fully consistent calculation scheme based on covariant energy density functional theory. Dipole spectra of even-even 130^{130}Sn -- 140^{140}Sn and 68^{68}Ni -- 78^{78}Ni isotopes calculated within both RQRPA and RQTBA show two well separated collective structures: the higher-lying giant dipole resonance (GDR) and the lower-lying pygmy dipole resonance (PDR) which can be identified by a different behavior of the transition densities of states in these regions.Comment: 28 pages, 13 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 18/02/2019