Theoretical studies of low-lying dipole strength in even-even spherical
nuclei within the relativistic quasiparticle time blocking approximation
(RQTBA) are presented. The RQTBA developed recently as an extension of the
self-consistent relativistic quasiparticle random phase approximation (RQRPA)
enables one to investigate effects of coupling of two-quasiparticle excitations
to collective vibrations within a fully consistent calculation scheme based on
covariant energy density functional theory. Dipole spectra of even-even
130Sn -- 140Sn and 68Ni -- 78Ni isotopes calculated within
both RQRPA and RQTBA show two well separated collective structures: the
higher-lying giant dipole resonance (GDR) and the lower-lying pygmy dipole
resonance (PDR) which can be identified by a different behavior of the
transition densities of states in these regions.Comment: 28 pages, 13 figure