1,360 research outputs found
J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV
We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and
62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields
are presented as a function of both collision centrality and transverse
momentum. Nuclear modifications are obtained for central relative to peripheral
Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative
to scaled p+p cross sections obtained from other measurements (R_AA). The
observed suppression patterns at 39 and 62.4 GeV are quite similar to those
previously measured at 200 GeV. This similar suppression presents a challenge
to theoretical models that contain various competing mechanisms with different
energy dependencies, some of which cause suppression and others enhancement.Comment: 365 authors, 10 pages, 11 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Measurement of higher cumulants of net-charge multiplicity distributions in AuAu collisions at GeV
We report the measurement of cumulants () of the net-charge
distributions measured within pseudorapidity () in AuAu
collisions at GeV with the PHENIX experiment at the
Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. ,
) of the net-charge distributions, which can be related to volume
independent susceptibility ratios, are studied as a function of centrality and
energy. These quantities are important to understand the quantum-chromodynamics
phase diagram and possible existence of a critical end point. The measured
values are very well described by expectation from negative binomial
distributions. We do not observe any nonmonotonic behavior in the ratios of the
cumulants as a function of collision energy. The measured values of and can be directly compared to lattice
quantum-chromodynamics calculations and thus allow extraction of both the
chemical freeze-out temperature and the baryon chemical potential at each
center-of-mass energy.Comment: 512 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for
publication in Phys. Rev. C as a Rapid Communication. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
L\'evy-stable two-pion Bose-Einstein correlations in GeV AuAu collisions
We present a detailed measurement of charged two-pion correlation functions
in 0%-30% centrality GeV AuAu collisions by the
PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well
described by Bose-Einstein correlation functions stemming from L\'evy-stable
source distributions. Using a fine transverse momentum binning, we extract the
correlation strength parameter , the L\'evy index of stability
and the L\'evy length scale parameter as a function of average
transverse mass of the pair . We find that the positively and the
negatively charged pion pairs yield consistent results, and their correlation
functions are represented, within uncertainties, by the same L\'evy-stable
source functions. The measurements indicate a decrease of the
strength of the correlations at low . The L\'evy length scale parameter
decreases with increasing , following a hydrodynamically
predicted type of scaling behavior. The values of the L\'evy index of stability
are found to be significantly lower than the Gaussian case of
, but also significantly larger than the conjectured value that may
characterize the critical point of a second-order quark-hadron phase
transition.Comment: 448 authors, 25 pages, 11 figures, 4 tables, 2010 data. v2 is version
accepted for publication in Phys. Rev. C. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Upsilon (1S+2S+3S) production in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and cold-nuclear matter effects
The three Upsilon states, Upsilon(1S+2S+3S), are measured in d+Au and p+p
collisions at sqrt(s_NN)=200 GeV and rapidities 1.2<|y|<2.2 by the PHENIX
experiment at the Relativistic Heavy-Ion Collider. Cross sections for the
inclusive Upsilon(1S+2S+3S) production are obtained. The inclusive yields per
binary collision for d+Au collisions relative to those in p+p collisions
(R_dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going
direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going
direction. The measured results are compared to a nuclear-shadowing model,
EPS09 [JHEP 04, 065 (2009)], combined with a final-state breakup cross section,
sigma_br, and compared to lower energy p+A results. We also compare the results
to the PHENIX J/psi results [Phys. Rev. Lett. 107, 142301 (2011)]. The rapidity
dependence of the observed Upsilon suppression is consistent with lower energy
p+A measurements.Comment: 495 authors, 11 pages, 9 figures, 5 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Mid-Rapidity Direct-Photon Production in p+p Collisions at sqrt(s) = 200 GeV
A measurement of direct photons in p+p collisions at sqrt(s)=200 GeV is
presented. A photon excess above background from pi^0 --> gamma+gamma, eta -->
gamma+gamma, and other decays is observed in the transverse momentum range 5.5
< p_T < 7 GeV/c. The result is compared to a next-to-leading-order perturbative
QCD calculation. Within errors, good agreement is found between the QCD
calculation and the measured result.Comment: 330 authors, 7 pages text, RevTeX, 2 figures, 2 tables. Submitted to
Physical Review D. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV
The production of deuterons and antideuterons in the transverse momentum
range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at
sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A
coalescence analysis comparing the deuteron and antideuteron spectra with those
of protons and antiprotons, has been performed. The coalescence probability is
equal for both deuterons and antideuterons and increases as a function of p_T,
which is consistent with an expanding collision zone. Comparing (anti)proton
yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/-
0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Inclusive cross section and single-transverse-spin asymmetry for very forward neutron production in polarized p+p collisions at sqrt(s)=200 GeV
The energy dependence of the single-transverse-spin asymmetry, A_N, and the
cross section for neutron production at very forward angles were measured in
the PHENIX experiment at RHIC for polarized p+p collisions at sqrt(s)=200 GeV.
The neutrons were observed in forward detectors covering an angular range of up
to 2.2 mrad. We report results for neutrons with momentum fraction of x_F=0.45
to 1.0. The energy dependence of the measured cross sections were consistent
with x_F scaling, compared to measurements by an ISR experiment which measured
neutron production in unpolarized p+p collisions at sqrt(s)=30.6--62.7 GeV. The
cross sections for large x_F neutron production for p+p collisions, as well as
those in e+p collisions measured at HERA, are described by a pion exchange
mechanism. The observed forward neutron asymmetries were large, reaching
A_N=-0.08+/-0.02 for x_F=0.8; the measured backward asymmetries, for negative
x_F, were consistent with zero. The observed asymmetry for forward neutron
production is discussed within the pion exchange framework, with interference
between the spin-flip amplitude due to the pion exchange and nonflip amplitudes
from all Reggeon exchanges. Within the pion exchange description, the measured
neutron asymmetry is sensitive to the contribution of other Reggeon exchanges
even for small amplitudes.Comment: 383 authors, 16 pages, 18 figures, 6 tables. Submitted to Phys. Rev.
D. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Cross sections and double-helicity asymmetries of midrapidity inclusive charged hadrons in p+p collisions at sqrt(s)=62.4 GeV
Unpolarized cross sections and double-helicity asymmetries of
single-inclusive positive and negative charged hadrons at midrapidity from p+p
collisions at sqrt(s)=62.4 GeV are presented. The PHENIX measurements for 1.0 <
p_T < 4.5 GeV/c are consistent with perturbative QCD calculations at
next-to-leading order in the strong coupling constant, alpha_s. Resummed pQCD
calculations including terms with next-to-leading-log accuracy, yielding
reduced theoretical uncertainties, also agree with the data. The
double-helicity asymmetry, sensitive at leading order to the gluon polarization
in a momentum-fraction range of 0.05 ~< x_gluon ~< 0.2, is consistent with
recent global parameterizations disfavoring large gluon polarization.Comment: PHENIX Collaboration. 447 authors, 12 pages, 5 figures, 5 tables.
Submitted to Physical Review
Nuclear matter effects on production in asymmetric Cu+Au collisions at = 200 GeV
We report on production from asymmetric Cu+Au heavy-ion collisions
at =200 GeV at the Relativistic Heavy Ion Collider at both
forward (Cu-going direction) and backward (Au-going direction) rapidities. The
nuclear modification of yields in CuAu collisions in the Au-going
direction is found to be comparable to that in AuAu collisions when plotted
as a function of the number of participating nucleons. In the Cu-going
direction, production shows a stronger suppression. This difference is
comparable in magnitude and has the same sign as the difference expected from
shadowing effects due to stronger low- gluon suppression in the larger Au
nucleus. The relative suppression is opposite to that expected from hot nuclear
matter dissociation, since a higher energy density is expected in the Au-going
direction.Comment: 349 authors, 10 pages, 4 figures, and 4 tables. Submitted to Phys.
Rev. C. For v2, fixed LaTeX error in 3rd-to-last sentence. Plain text data
tables for the points plotted in figures for this and previous PHENIX
publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations
The jet fragmentation function is measured with direct photon-hadron
correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the
photon is an excellent approximation to the initial p_T of the jet and the
ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation
function. A statistical subtraction is used to extract the direct photon-hadron
yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_
AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates
modification of the jet fragmentation function. Suppression, most likely due to
energy loss in the medium, is seen at high z_T. The fragment yield at low z_T
is enhanced at large angles. Such a trend is expected from redistribution of
the lost energy into increased production of low-momentum particles.Comment: 562 authors, 70 insitutions, 8 pages, and 3 figures. Submitted to
Phys. Rev. Lett. v2 has minor changes to improve clarity. Plain text data
tables for the points plotted in figures for this and previous PHENIX
publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …